#### **Checkpoints Chapter 5 Projectiles**

# **Multiple Choice**

#### Question 1

∴ C (ANS)

The others are all incorrect.

## Question 2

There is a mathematical solution to this, but trial and error is much quicker.

For those that are interested, the sine function is symmetrical about  $90^{\circ}$  ( $0 \le \theta \le$ 

180). 
$$\therefore \sin 70 = \sin(90 - 20)$$
  
=  $\sin(90 + 20)$   
=  $\sin 110$ .  
 $\therefore \theta = 110 \div 2$   
 $\therefore \theta = 55$ .

The physics way of thinking about this is that if we ignore air resistance, then the maximum range is when  $\theta$  is 45°. The range is symmetrical about 45°. So the two values will be  $45 \pm 10$ .

### **Question 3**

The maximum value of the sine function is 1. This occurs when the angle is 90°.

$$\therefore \theta = 90 \div 2$$
$$\therefore \theta = 45.$$
$$\therefore \mathbf{C} \quad (\mathbf{ANS})$$

### **Question 4**

The easiest way to solve this problem is to consider the vertical motion. At the midpoint, the vertical velocity will be zero.

Use initial vertical component to be 10 m s<sup>-1</sup>. (From 20 sin30°)

The speed at the top is zero,

Use 
$$v = u - gt$$
,  
 $0 = 10$ 

$$0 = 10 - 9.8 \text{ t}$$

$$t = 1.02 \text{ s}$$

This is the time it takes to get to the top, so the time of flight is double that.

## **Question 5**

If we take air resistance into consideration, there is now a force acting to oppose the motion. Combining this with the weight, (acting down), means that the best direction for the resultant is between these two.

## **Question 6**

The only force acting in the horizontal direction is air resistance. Since the horizontal component of the velocity remains constant, then the air resistance must be small.

### Question 7

Consider the vertical motion, assume  $u_{\text{vertical}} = 0$ ,

Use h = ut + 
$$\frac{1}{2}$$
 gt<sup>2</sup>, where g = 9.8 m s<sup>-2</sup>  
 $\therefore$  7 = 0 + 4.9 × t<sup>2</sup>  
 $\therefore$  t<sup>2</sup> = 1.429  
 $\therefore$  t = 1.2 s  
 $\therefore$  **B** (ANS)

## **Question 8**

Since we are to ignore air resistance, in the horizontal direction the distance travelled is given by

## **Question 9**

She will have to fall the same distance, so she will take the same time to fall

## **Question 10**

If the ball is in the air for 6 seconds, it takes 3 to get to the top, where its velocity in the vertical direction will be zero.

#### Question 11

Use h = ut + 
$$\frac{1}{2}$$
 gt<sup>2</sup>, where g = -9.8 m s<sup>-2</sup>  
 $\therefore$  h = 29.6 × 3 - 4.9 × 3<sup>2</sup>  
 $\therefore$  h = 88.8 - 44.1  
 $\therefore$  h = 44.7 m  
 $\therefore$  **D** (ANS)

# **Extended questions**

## **Question 12**

The small part will fly off tangentially. It will go straight up therefore it will land directly below A, at close to S.

#### **Question 13a**

E<sub>tot</sub> = constant = KE<sub>bottom</sub> = KE<sub>top</sub> + PE<sub>top</sub>  
E<sub>tot</sub> = 1860 = 660 + mgh  

$$\therefore$$
 1860 = 660 + 60 × 10 × h  

$$\frac{1860 - 660}{60 \times 10}$$

$$\therefore h = \frac{60 \times 10}{60 \times 10}$$

$$\therefore h = 2.0 \text{ m} \text{ (ANS)}$$

### **Question 13b**

Using KE<sub>top</sub> = 660  
= 
$$\frac{1}{2} \times m \times v^2$$
  
=  $\frac{1}{2} \times 60 \times v^2$   
 $\therefore v = 4.7 \text{ m s}^{-1}$  (ANS)

### **Question 14a**

The distance is 1.5m, (from the diagram) you must take the displacement to be between the start point and the final resting place, ∴ vertically down.

## **Question 14b**

The time taken will be the time to travel to the top of the flight and then down to the ground. Considering the upward motion, take up to be positive.

v = u + at becomes v = u - gt the acceleration due to gravity is down.

∴0 = 
$$6.5\sin 30 - 10 \times t$$
  
∴t =  $0.325$  s to go up

We must calculate the maximum height of the ball. This is given by

$$v^2 = u^2 + 2ax$$
  
 $\therefore 0^2 = (6.5\sin 30)^2 - 2 \times 10 \times x$   
 $\therefore x = 0.528 \text{ m}$ 

The total height of the ball above the ground is given by 1.5 + 0.528 = 2.028m

Considering the downward motion, take down to be positive.

$$x = ut + \frac{1}{2} at^2$$
  
 $\therefore 2.028 = 0 + \frac{1}{2} \times 10 \times t^2$   
 $\therefore t = 0.637$  s to come down  
the total travel time is the time to go up plus  
the time to go down which equals

$$0.325 + 0.637$$
  
= **0.96 s** (ANS)

#### **Question 14c**

The horizontal velocity is given by vcos30 = 5.63 m/s
∴ the horizontal distance travelled (the range) equals 5.63 × 0.96
= **5.4 m** (ANS)

### Question 15a

The time the ball takes to fall 45 m is the same time as it takes to travel the 155 m.

Use x = ut + 
$$\frac{1}{2}$$
at<sup>2</sup>  
∴ 45 = 0 +  $\frac{1}{2}$  × 10 × t<sup>2</sup>  
∴ t<sup>2</sup> = 9  
∴ t = 3 secs

In this time it travels 155 m.

∴ 
$$v = \frac{\frac{d}{t}}{\frac{155}{3}}$$
  
= 52 m s<sup>-1</sup> (ANS)

### Question 15b

The initial angle of elevation is  $30^{\circ}$ . Then  $v_{\text{vertical}} = v_0 \sin 30^{\circ}$ 

= 50 × 0.5  
= 25 m/s  
Use 
$$v^2 = u^2 - 2gh$$
  
∴ At the top  $v_{\text{vertical}} = 0$ ,  
∴  $0 = 25^2 - 2 \times 10 \times h$   
∴  $h = 625 \div 20$   
∴  $h = 31.25 = 31 \text{ m}$  (ANS)

# **Question 15c**

This is how long it takes to reach it maximum height. It then needs to drop a total of

31.25 + 45 = 76.25m  
Use h = ut + 
$$\frac{1}{2}$$
at<sup>2</sup>  
∴ 76.25 = 0 +  $\frac{1}{2}$  × 10 × t<sup>2</sup>  
∴ t<sup>2</sup> = 15.  
∴ t = 3.905 secs  
∴ total time = 3.905 + 2.5  
= 6.405  
= 6.4 sec (ANS)

## **Question 15d**

If the time of flight was 6.405 (**don't round off**) sec,

then the range = 
$$v_{horizontal} \times time$$
  
=  $50\cos 30^{\circ} \times 6.405$   
=  $277.34$   
= **277 m** (ANS)

## **Question 16a**

The vertical and horizontal components are equal, so the angle must be 45°

## **Question 16b**

Use Pythagoras,  

$$v^2 = 13.8^2 + 18.4^2$$
  
∴  $v^2 = 529$   
∴  $v = 23 \text{ m s}^{-1}$  (ANS)

## **Question 17a**

This is a question that is best solved using the range formula. I think that you should have this formula on your cheat sheet, but be VERY careful when using it.

$$∴ R = \frac{v^2 \sin 2\theta}{g}$$
∴ 100 =  $\frac{v^2 \times \sin 60}{10}$ 
∴  $v^2 = 1000 \div \sin 60^0$ 
∴  $v^2 = 1154.7$ 
∴  $v = 34 \text{ m s}^{-1}$  (ANS)

#### **Question 17b**

This is another question that is best solved using the range formula.

$$R = \frac{v^2 \sin 2\theta}{g}$$

$$R = \frac{v^2 \times \sin 90}{9.8}$$

$$\therefore 100 = \frac{9.8}{9.8}$$

$$\therefore v^2 = 980 \div \sin 90^0$$

$$\therefore v^2 = 980$$

$$\therefore v = 31.3 \text{ m s}^{-1} \quad \text{(ANS)}$$

## **Question 18a**

The vertical displacement

## **Question 18b**

The total displacement is the difference between the final and initial positions. Vertically the difference is 1.4m

Horizontally the difference is 3.4m Use Pythagoras to find the displacement.

$$x^{2} = 1.4^{2} + 3.4^{2}$$
  
 $\therefore x^{2} = 13.52$   
 $\therefore x = 3.677$   
 $\therefore x = 3.7 \text{ m}$  (ANS)

### **Question 18c**

In the horizontal direction, the ball travels 3.4 m in 1.1 secs

∴ 
$$v = \frac{d}{t}$$
  
=  $\frac{3.4}{1.1}$   
= 3.09  
∴  $v = 3.1 \text{ m s}^{-1}$  (ANS)

### **Question 18d**

In the vertical direction the displacement

y = ut - 
$$\frac{1}{2}$$
gt<sup>2</sup>  
1.4 = u × 1.1 -  $\frac{1}{2}$  × 10 × 1.1<sup>2</sup>  
1.4 + 6.05 = u × 1.1  
∴ u = 6.77  
∴ u = 6.8 m s<sup>-1</sup> (ANS)

## **Question 18e**

Use Pythagoras to find the launch velocity. (Don't use your rounded off figures)

$$v^2 = 3.09^2 + 6.77^2$$
  
 $\therefore v^2 = 55.381$   
 $\therefore v = 7.44$   
 $\therefore v = 7.4 \text{ m/s (ANS)}$ 

# **Question 18f**

Use tan 
$$\theta = \frac{\frac{V_{\text{vertical}}}{V_{\text{horizontal}}}}{\frac{6.77}{3.09}}$$
$$\therefore \theta = 65.47^{\circ}$$
$$= 65^{\circ} \text{ (ANS)}$$

## **Question 19a**

Initially the car is moving horizontally, so the initial vertical velocity must be zero

## **Question 19b**

In the vertical direction the velocity

$$v = u + gt$$
  
 $v = 0 + 10 \times 1.8$   
 $v = 18 \text{ m s}^{-1}$  (ANS)

# **Question 19c**

Use x = ut +  $\frac{1}{2}$ at<sup>2</sup>, where u = 0. ∴ x =  $\frac{1}{2}$  × 9.8 × 1.8<sup>2</sup> ∴ x = 15.9 m (ANS)

### **Question 20a**

KE =  $\frac{1}{2}$ mv<sup>2</sup>  $\therefore 110 = \frac{1}{2} \times 0.550 \times v^2$ (Remember to convert the mass to kilograms)  $\frac{2 \times 110}{0.550}$   $\therefore v = 20 \text{ m s}^{-1} \text{ (ANS)}$ 

### **Question 20b**

At the ground level TE = KE + PE, (PE = 0)  $\therefore$  TE = 110J At the top TE = 110J = KE + PE  $\therefore$  110 = 0.55 × 9.8 × 8 + KE  $\therefore$  KE = 110 – 43.12  $\therefore$  KE<sub>top</sub> = 66.9 J (ANS)

### Question 20c

∴ 
$$\frac{1}{2}$$
mv<sup>2</sup> = 66.88  
 $\frac{2 \times 66.88}{0.55}$   
∴ v<sup>2</sup> = 243.2  
∴ v = 15.49  
∴ v = 15.5 m s<sup>-1</sup> (ANS)

## **Question 20d**

The height that the projectile reaches is given

by  $v^2 = u^2 - 2gh$   $\therefore 0^2 = (u \sin \theta)^2 - 2 \times 9.8 \times 8$   $\therefore 0 = (20 \sin \theta)^2 - 156.8$   $\therefore \sin^2 \theta = 156.8 \div 400$   $\therefore \sin \theta = \sqrt{0.392}$   $\therefore \theta = 38.76^\circ$  $\therefore \theta = 39^\circ$  (ANS)

# Question 21a (2012 Q6a, 3m, 63%)

Using the velocities in the vertical direction, and  $v^2 - u^2 = 2gx$ , for the motion on the way up to the top of the flight.

∴ 0 - 
$$(u\sin 60^{\circ})^{2} = 2 \times -10 \times 15$$
  
∴  $-u^{2} \times \left(\frac{\sqrt{3}}{2}\right)^{2} = -300$   
∴  $u^{2} = 400$ 

The time it takes to get to the top of the flight will be half the time of flight.

Use v = u - gt to get 0 = 20sin60° - 10t ∴ 0 = 17.32 - 10t ∴ t = 1.7 sec ∴ Total time = 3.5 sec (ANS)

# Question 22a (2013 Q8a, 3m, 50%)

The methodical way to complete this is to divide the problem into two parts, up and down.

Consider 'up'
Initial velocity is 10 m/s
Final velocity = o
∴ v = u - gt
∴ 0 = 10 - 10 t
∴ t = 1 sec.

Height at top  $x = ut - \frac{1}{2}gt^2$ gives  $x = 10 \times 1 - \frac{1}{2} \times 10 \times 1^2$   $\therefore x = 5 \text{ m}$  $\therefore$  height = 20 m.

Consider 'down'  $x = ut + \frac{1}{2}gt^2$   $\therefore 20 = 0 + 5t^2$   $\therefore t^2 = 4$  $\therefore t = 2$ 

∴ Total time = 1.0 + 2.0 = 3.0 sec (ANS)

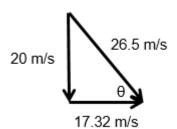
# Question 22b (2013 Q8b, 3m, 40%)

The horizontal component of the velocity will remain constant at

 $v_H = 20\cos 30^{\circ}$ = 17.32 m/s.

The vertical component will be

v = u + gt


on the way down, u = 0, g = 10, t = 2

 $\therefore$  v = 20 m/s.

Use Pythagoras to find the magnitude of the velocity.

∴  $20^2 + 17.32^2 = v^2$ ∴  $v^2 = 700$ ∴ v = 26.5 m/s

To find the angle use



$$Use tanθ = \frac{20}{17.32}$$
∴ θ = 49.1°
∴ v= 26.5 ms<sup>-1</sup> at an angle of 49.1°
∴ 26.5 m s<sup>-1</sup> 49.1° (ANS)

#### **Question 23a** (2014 Q3a, 2m, 75%)

Use the initial vertical component of the velocity.

$$v_{\text{vertical}} = 20 \times \sin 30^{\circ}$$
  
= 10

In the vertical direction, use

$$v^2 - u^2 = 2gx$$
  
 $\therefore 0^2 - 10^2 = 2 \times -10 \times x$   
 $\therefore 100 = 20 \times x$   
 $\therefore x = 5 m$  (ANS)

#### **Question 23b** (2014 Q3b, 3m, 53%)

To find the time that it takes for the ball to hit the advertising board, you need to know how long it takes to travel the 26 m in the horizontal.

Use d = v × t  

$$\therefore$$
 26 = 20 cos30° × t  
 $\therefore$  t = 1.5

In the vertical.

Then use 
$$s = ut - \frac{1}{2} \times 10 \times 1.5^{2}$$
  
 $\therefore s = 20 \sin 30^{0} \times 1.5 - 11.26$   
 $\therefore s = 10 \times 1.5 - 11.26$   
 $\therefore s = 3.73 \text{ m}$   
 $\therefore 3.7 \text{ m (ANS)}$ 

#### **Question 24a** (2015 Q5a, 2m, 80%)

In the vertical direction the initial speed is  $v_v = 40 \times \sin 30^\circ$ 

$$\therefore v_v = 20.$$

At the top of its flight the vertical component of the ball's velocity is zero.

Use 
$$v^2 - u^2 = 2gh$$
.

$$\therefore 0^2 - 20^2 = 2 \times (-10) \times h$$

∴ 
$$400 = 20 \times h$$
  
∴  $h = 20 \text{ m}$  (ANS)

#### **Question 24b** (2015 Q5b, 3m, 50%)

Find the time taken to get to the point G, by using the initial horizontal speed.

In the horizontal direction

Use h = ut  $-\frac{1}{2}$  x g ×  $t^2$  to get the vertical position of the ball at 5 seconds.

∴ 
$$h = 20 \times 5 - \frac{1}{2} \times 10 \times 5^{2}$$
  
∴  $h = -25 \text{ m}$   
∴ **25 m** (ANS)

#### Question 25a (2016 Q5a, 3m, 69%)

This question can be completed using the range formula.

$$\therefore d = \frac{v^2 \sin 2\theta}{g}$$

$$\therefore d = \frac{40^2 \times \sin 60}{10}$$

$$\therefore d = 138.56$$

$$\therefore d = 139 \text{ m (ANS)}$$

The other way of doing this is to consider the vertical direction and find the time it takes to get to the top.

Use 
$$v = u - gt$$
  
 $\therefore 0 = 40 \times \sin 30 - 10 t$   
 $\therefore 0 = 40 \times 0.5 - 10 t$   
 $\therefore 10 t = 20$   
 $\therefore t = 2 sec$ 

: it takes 4 secs for the total flight.

In the horizontal direction

Use d = 
$$v_{horizontal} \times t$$
  
 $\therefore$  d = 40 cos30  $\times$  4  
 $\therefore$  d = 138.56  
 $\therefore$  d = 139 m (ANS)

#### Question 25b (2016 Q5b, 2m, 43%)

The speed of the ball is a minimum at the top of the flight. (It is not zero, as it still has a horizontal component). The total energy (KE + GPE) of the ball will remain constant. The Gravitational PE will have the shape of the motion, so the KE must be A

#### Question 26 (2017 Q9a, 3m)

Use h = ut -  $\frac{1}{2}$  gt<sup>2</sup> to find the height.

To find t, use (horizontal)  $v = \overline{t}$ 

$$\therefore t = \frac{d}{v}$$

$$\frac{26}{20 \cos 30^{\circ}}$$

$$\therefore t = 1.50$$

∴ h = 
$$20\sin 30 \times 1.5 - \frac{1}{2} \times 9.8 \times 1.5^2$$
  
∴ h =  $3.975$ 

$$\therefore h = 4.0 m \qquad (ANS)$$