

Victorian Certificate of Education 2015

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

			Letter
STUDENT NUMBER			

SPECIALIST MATHEMATICS

Written examination 2

Monday 9 November 2015

Reading time: 3.00 pm to 3.15 pm (15 minutes) Writing time: 3.15 pm to 5.15 pm (2 hours)

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
1	22	22	22
2	5	5	58
			Total 80

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set squares, aids for curve sketching, one bound reference, one approved CAS calculator or CAS software and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 23 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Answer sheet for multiple-choice questions.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **student number** in the space provided above on this page.
- Check that your **name** and **student number** as printed on your answer sheet for multiple-choice questions are correct, **and** sign your name in the space provided to verify this.
- All written responses must be in English.

At the end of the examination

• Place the answer sheet for multiple-choice questions inside the front cover of this book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

SECTION 1

Instructions for Section 1

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Take the acceleration due to gravity to have magnitude g m/s², where g = 9.8.

Question 1

The ellipse $\frac{(x-2)^2}{9} + \frac{(y-3)^2}{4} = 1$ can be expressed in parametric form as

A.
$$x = 2 + 3t$$
 and $y = 3 + 2\sqrt{1 + t^2}$

B.
$$x = 2 + 3\sec(t)$$
 and $y = 3 + 2\tan(t)$

C.
$$x = 2 + 9\cos(t)$$
 and $y = 3 + 4\sin(t)$

D.
$$x = 3 + 2\cos(t)$$
 and $y = 2 + 3\sin(t)$

E.
$$x = 2 + 3\cos(t)$$
 and $y = 3 + 2\sin(t)$

Question 2

The range of the function with rule $f(x) = (2-x)\arcsin\left(\frac{x}{2}-1\right)$ is

A.
$$[-\pi, 0]$$

$$\mathbf{B.} \quad \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

C.
$$\left[-\frac{(2-x)\pi}{2}, \frac{(2-x)\pi}{2}\right]$$

E.
$$[0,\pi]$$

Question 3

If both a and c are non-zero real numbers, the relation $a^2x^2 + (1 - a^2)y^2 = c^2$ cannot represent

- A. a circle.
- **B.** an ellipse.
- C. a hyperbola.
- **D.** a single straight line.
- **E.** a pair of straight lines.

The two asymptotes of a particular hyperbola have gradients $\frac{2}{3}$ and $-\frac{2}{3}$ respectively and intersect at the point (2, 1). One branch of the hyperbola passes through the point (5, 5).

The equation of the hyperbola is

A.
$$\frac{(x-2)^2}{4} - \frac{(y-1)^2}{9} = 1$$

B.
$$\frac{(x-2)^2}{4} - \frac{(y-1)^2}{9} = \frac{17}{36}$$

C.
$$\frac{(y-1)^2}{9} - \frac{(x-2)^2}{4} = \frac{17}{36}$$

D.
$$\frac{(y-1)^2}{4} - \frac{(x-2)^2}{9} = 3$$

E.
$$\frac{(x-2)^2}{9} - \frac{(y-1)^2}{4} = 3$$

Question 5

Given $z = \frac{1 + i\sqrt{3}}{1 + i}$, the modulus and argument of the complex number z^5 are respectively

$$\mathbf{A.} \quad 2\sqrt{2} \text{ and } \frac{5\pi}{6}$$

B.
$$4\sqrt{2} \text{ and } \frac{5\pi}{12}$$

C.
$$4\sqrt{2}$$
 and $\frac{7\pi}{12}$

D.
$$2\sqrt{2} \text{ and } \frac{5\pi}{12}$$

E.
$$4\sqrt{2}$$
 and $-\frac{\pi}{12}$

Question 6

Which one of the following relations has a graph that passes through the point 1 + 2i in the complex plane?

$$\mathbf{A.} \quad z\overline{z} = \sqrt{5}$$

B. Arg
$$(z) = \frac{\pi}{3}$$

$$\mathbf{C.} \quad |z-1| = |z-2i|$$

$$\mathbf{D.} \quad \operatorname{Re}(z) = 2\operatorname{Im}(z)$$

$$\mathbf{E.} \quad z + \overline{z} = 2$$

If $z = \sqrt{3} + 3i$, then z^{63} is

A. real and negative

B. equal to a negative real multiple of i

C. real and positive

D. equal to a positive real multiple of i

E. a positive real multiple of $1+i\sqrt{3}$

Question 8

A relation that does **not** represent a circle in the complex plane is

A. $z\overline{z} = 4$

B. |z + 3i| = 2|z - i|

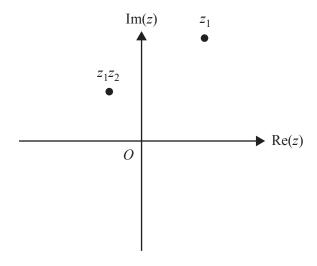
C. |z-i| = |z+2|

D. |z-1+i|=4

 $\mathbf{E.} \quad |z| + 2|\overline{z}| = 4$

Question 9

Let $z_1 = r_1 \text{cis}(\theta_1)$ and $z_2 = r_2 \text{cis}(\theta_2)$, where z_1 and $z_1 z_2$ are shown in the Argand diagram below; θ_1 and θ_2 are acute angles.



A statement that is **necessarily** true is

A. $r_2 > 1$

B. $\theta_1 < \theta_2$

C. $\left|\frac{z_1}{z_2}\right| > r_1$

D. $\theta_1 = \theta_2$

E. $r_1 > 1$

Using a suitable substitution, the definite integral $\int_{0}^{1} (x^{2}\sqrt{3x+1}) dx$ is equivalent to

A.
$$\frac{1}{9} \int_{0}^{1} \left(u^{\frac{5}{2}} - 2u^{\frac{3}{2}} + u^{\frac{1}{2}} \right) du$$

B.
$$\frac{1}{27} \int_{1}^{4} \left(u^{\frac{5}{2}} - 2u^{\frac{3}{2}} + u^{\frac{1}{2}} \right) du$$

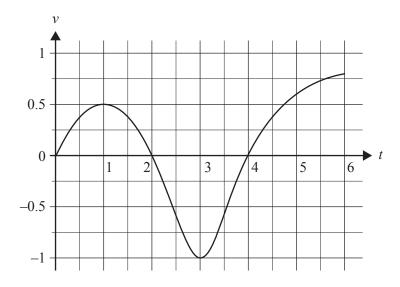
C.
$$\frac{1}{9} \int_{1}^{4} \left(u^{\frac{5}{2}} - 2u^{\frac{3}{2}} + u^{\frac{1}{2}} \right) du$$

$$\mathbf{D.} \quad \frac{1}{27} \int_{0}^{1} \left(u^{\frac{5}{2}} - 2u^{\frac{3}{2}} + u^{\frac{1}{2}} \right) du$$

E.
$$\frac{1}{3}\int_{1}^{4} \left(u^{\frac{5}{2}} - 2u^{\frac{3}{2}} + u^{\frac{1}{2}}\right) du$$

Question 11

The velocity–time graph for a body moving along a straight line is shown below.



The body first returns to its initial position within the time interval

- **A.** (0, 0.5)
- **B.** (0.5, 1.5)
- **C.** (1.5, 2.5)
- **D.** (2.5, 3.5)
- **E.** (3.5, 5)

Given
$$\frac{dy}{dx} = 1 - \frac{y}{3}$$
 and $y = 4$ when $x = 2$, then

A.
$$y = e^{\frac{-(x-2)}{3}} - 3$$

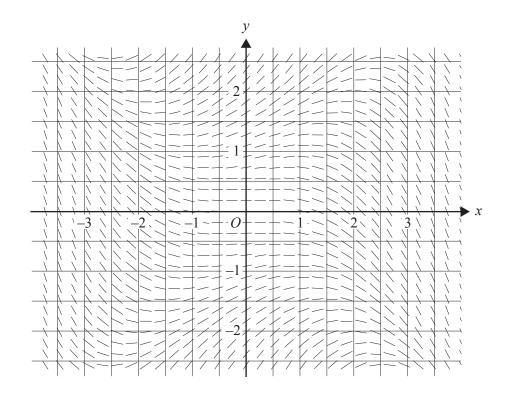
B.
$$y = e^{\frac{-(x-2)}{3}} + 3$$

C.
$$y = 4e^{\frac{-(x-2)}{3}}$$

D.
$$y = e^{\frac{4(y-x-2)}{3}}$$

E.
$$y = e^{\frac{(x-2)}{3}} + 3$$

Question 13



The direction field for a certain differential equation is shown above.

The solution curve to the differential equation that passes through the point (-2.5, 1.5) could also pass through

- **A.** (0, 2)
- **B.** (1, 2)
- **C.** (3, 1)
- **D.** (3, -0.5)
- **E.** (-0.5, 2)

A differential equation that has $y = x \sin(x)$ as a solution is

$$\mathbf{A.} \quad \frac{d^2y}{dx^2} + y = 0$$

$$\mathbf{B.} \quad x \frac{d^2 y}{dx^2} + y = 0$$

$$C. \quad \frac{d^2y}{dx^2} + y = -\sin(x)$$

$$\mathbf{D.} \quad \frac{d^2y}{dx^2} + y = -2\cos(x)$$

E.
$$\frac{d^2y}{dx^2} + y = 2\cos(x)$$

Question 15

The component of the force $\tilde{\mathbf{y}} = a\tilde{\mathbf{i}} + b\tilde{\mathbf{j}}$, where a and b are non-zero real constants, in the direction of the vector $\tilde{\mathbf{w}} = \tilde{\mathbf{i}} + \tilde{\mathbf{j}}$, is

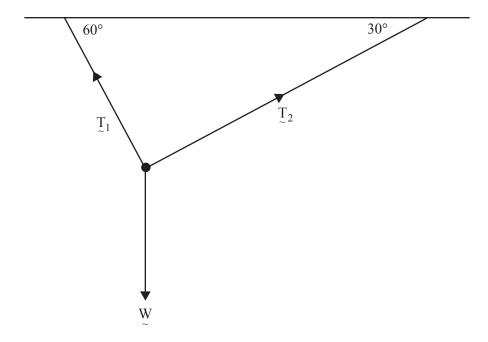
A.
$$\left(\frac{a+b}{2}\right)$$
 $\underline{\mathbf{w}}$

B.
$$\frac{\tilde{F}}{a+b}$$

C.
$$\left(\frac{a+b}{a^2+b^2}\right)$$
 F

D.
$$(a+b)$$
w

E.
$$\left(\frac{a+b}{\sqrt{2}}\right)$$
 w



The diagram above shows a mass suspended in equilibrium by two light strings that make angles of 60° and 30° with a ceiling. The tensions in the strings are T_1 and T_2 , and the weight force acting on the mass is W. The correct statement relating the given forces is

A.
$$T_1 + T_2 + W = 0$$

B.
$$T_1 + T_2 - W = 0$$

C.
$$T_1 \times \frac{1}{2} + T_2 \times \frac{\sqrt{3}}{2} = 0$$

D.
$$T_1 \times \frac{\sqrt{3}}{2} + T_2 \times \frac{1}{2} = W$$

E.
$$T_1 \times \frac{1}{2} + T_2 \times \frac{\sqrt{3}}{2} = W$$

Question 17

Points A, B and C have position vectors $\underline{a} = 2\underline{i} + \underline{j}$, $\underline{b} = 3\underline{i} - \underline{j} + \underline{k}$ and $\underline{c} = -3\underline{j} + \underline{k}$ respectively. The cosine of angle ABC is equal to

$$\mathbf{A.} \quad \frac{5}{\sqrt{6}\sqrt{10}}$$

B.
$$\frac{7}{\sqrt{6}\sqrt{13}}$$

$$C. \quad -\frac{1}{\sqrt{6}\sqrt{13}}$$

D.
$$-\frac{7}{\sqrt{21}\sqrt{6}}$$

$$\mathbf{E.} \quad -\frac{2}{\sqrt{6}\sqrt{13}}$$

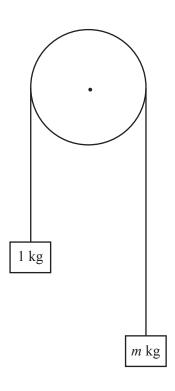
The position vectors of two moving particles are given by $\mathbf{r}_1(t) = (2+4t^2)\mathbf{i} + (3t+2)\mathbf{j}$ and $\mathbf{r}_2(t) = (6t)\mathbf{i} + (4+t)\mathbf{j}$, where $t \ge 0$.

The particles will collide at

- **A.** 3i + 3.5j
- **B.** 6i + 5j
- **C.** 3i + 4.5j
- **D.** 0.5i + j
- **E.** 5i + 6j

Question 19

A light inextensible string passes over a smooth pulley, as shown below, with particles of mass 1 kg and m kg attached to the ends of the string.



If the acceleration of the 1 kg particle is 4.9 ms^{-2} **upwards**, then *m* is equal to

- **A** .
- **B.** 2
- **C.** 3
- **D.** 4
- **E.** 5

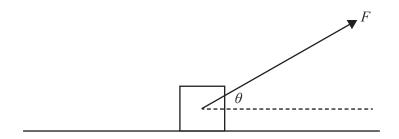
An object is moving in a straight line, initially at 5 ms⁻¹. Sixteen seconds later, it is moving at 11 ms⁻¹ in the **opposite** direction to its initial velocity.

Assuming that the acceleration of the object is constant, after 16 seconds the distance, in metres, of the object from its starting point is

- **A.** 24
- **B.** 48
- **C.** 73
- **D.** 96
- **E.** 128

Question 21

A block of mass M kg is on a rough horizontal plane. A constant force of F newtons is applied to the block at an angle of θ to the horizontal, as shown below. The block has acceleration a ms⁻² and the coefficient of friction between the block and the plane is μ .



The equation of motion of the block in the horizontal direction is

- **A.** $F \mu Mg = Ma$
- **B.** $F\cos(\theta) \mu Mg = Ma$
- C. $F\sin(\theta) \mu(Mg F\cos(\theta)) = Ma$
- **D.** $F\cos(\theta) \mu(F\sin(\theta) Mg) = Ma$
- **E.** $F\cos(\theta) \mu(Mg F\sin(\theta)) = Ma$

Question 22

A ball is thrown vertically up with an initial velocity of $7\sqrt{6}$ ms⁻¹, and is subject to gravity and air resistance.

The acceleration of the ball is given by $\ddot{x} = -(9.8 + 0.1v^2)$, where x metres is its vertical displacement, and $v \text{ ms}^{-1}$ is its velocity at time t seconds.

The time taken for the ball to reach its maximum height is

- A. $\frac{\pi}{3}$
- **B.** $\frac{5\pi}{21\sqrt{2}}$
- C. $\log_e(4)$
- **D.** $\frac{10\pi}{21\sqrt{2}}$
- **E.** $10\log_{\rho}(4)$

SECTION 2

Instructions for Section 2

Answer all questions in the spaces provided.

Unless otherwise specified, an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the **acceleration due to gravity** to have magnitude g m/s², where g = 9.8.

Question 1 (12 marks)

Consider $y = \sqrt{2 - \sin^2(x)}$.

a. Use the relation $y^2 = 2 - \sin^2(x)$ to find $\frac{dy}{dx}$ in terms of x and y.

1 mark

b. i. Write down the values of y where x = 0 and where $x = \frac{\pi}{2}$.

1 mark

ii. Write down the values of $\frac{dy}{dx}$ where x = 0 and where $x = \frac{\pi}{2}$.

1 mark

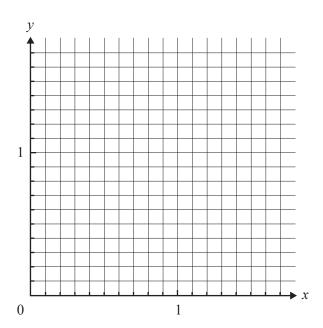
Now consider the function f with rule $f(x) = \sqrt{2 - \sin^2(x)}$ for $0 \le x \le \frac{\pi}{2}$.

c. Find the rule for the inverse function f^{-1} , and state the domain and range of f^{-1} .

3 marks

d. Sketch and label the graphs of f and f^{-1} on the axes below.

2 marks

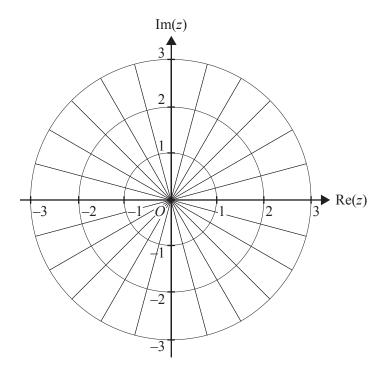


e.		e graphs of f and f^{-1} intersect at the point $P(a, a)$. d a , correct to three decimal places.	1 mark
			_
		on bounded by the graph of f , the coordinate axes and the line $x = 1$ is rotated about the form a solid of revolution.	
f.	i.	Write down a definite integral in terms of <i>x</i> that gives the volume of this solid of revolution.	2 marks
	ii.	Find the volume of this solid, correct to one decimal place.	1 mark
			_

Question 2 (12 marks)

a. i. On the Argand diagram below, plot and label the points 0 + 0i and $1 + i\sqrt{3}$.

2 marks



ii. On the same Argand diagram above, sketch the line $|z - (1 + i\sqrt{3})| = |z|$ and the circle |z - 2| = 1.

2 marks

iii. Use the fact that the line $|z - (1 + i\sqrt{3})| = |z|$ passes through the point z = 2, or otherwise, to find the equation of this line in cartesian form.

1 mark

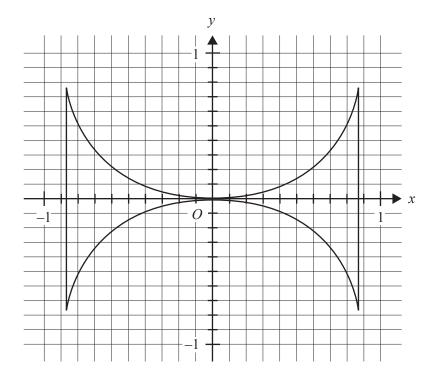
	orm $a + ib$.
_	
_	
_	
_	
_	Consider the equation $z^2 - 4\cos(\alpha)z + 4 = 0$, where α is a real constant and $0 < \alpha < \frac{\pi}{2}$
F	Consider the equation $z^2 - 4\cos(\alpha)z + 4 = 0$, where α is a real constant and $0 < \alpha < \frac{\pi}{2}$. ind the roots z_1 and z_2 of this equation, in terms of α , expressing your answers in polar orm.
F	ind the roots z_1 and z_2 of this equation, in terms of α , expressing your answers in polar
F	ind the roots z_1 and z_2 of this equation, in terms of α , expressing your answers in polar
F	ind the roots z_1 and z_2 of this equation, in terms of α , expressing your answers in polar
F	ind the roots z_1 and z_2 of this equation, in terms of α , expressing your answers in polar
F	ind the roots z_1 and z_2 of this equation, in terms of α , expressing your answers in polar
F	ind the roots z_1 and z_2 of this equation, in terms of α , expressing your answers in polar
F fo	ind the roots z_1 and z_2 of this equation, in terms of α , expressing your answers in polar
F fo	ind the roots z_1 and z_2 of this equation, in terms of α , expressing your answers in polar orm.

Question 3 (10 marks)

A manufacturer of bow ties wishes to design an advertising logo, represented below, where the upper boundary curve in the first and second quadrants is given by the parametric relations

$$x = \sin(t)$$
, $y = \frac{1}{2}\sin(t)\tan(t)$ for $t \in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$.

The logo is symmetrical about the *x*-axis.



a.	Find an expression for $\frac{dy}{dx}$ in terms of t.	2 mark
		-
		_
		-
		-

		_
i.	Verify that the cartesian equation of the upper boundary curve is $y = \frac{x^2}{2\sqrt{1-x^2}}$.	
		_
ii.	State the domain for x of the upper boundary curve.	

an antiderivative in terms of x , to be evaluated between two at the area of the advertising logo.	
	ppropriate 3 1

Question 4 (12 marks)

The position vector $\underline{\mathbf{r}}(t)$, from origin O, of a model helicopter t seconds after leaving the ground is given by

$$\underline{\mathbf{r}}(t) = \left(50 + 25\cos\left(\frac{\pi t}{30}\right)\right)\underline{\mathbf{j}} + \left(50 + 25\sin\left(\frac{\pi t}{30}\right)\right)\underline{\mathbf{j}} + \frac{2t}{5}\underline{\mathbf{k}}$$

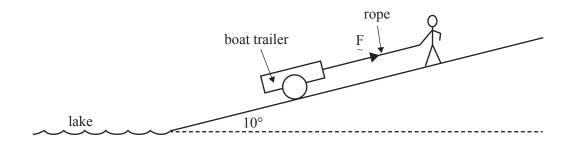
where \underline{i} is a unit vector to the east, \underline{j} is a unit vector to the north and \underline{k} is a unit vector vertically up. Displacement components are measured in metres.

l.	Find the time, in seconds, required for the helicopter to gain an altitude of 60 m.	1
ii.	Find the angle of elevation from <i>O</i> of the helicopter when it is at an altitude of 60 m. Give your answer in degrees, correct to the nearest degree.	2 1
		_
		_
		_
		_
A ftc	er how many seconds will the helicopter first be directly above the point of take-off?	1

Show that the velocity of the helicopter is perpendicular to its acceleration.	3
Find the speed of the helicopter in ms ⁻¹ , giving your answer correct to two decimal places.	2
	_
A treetop has position vector $\mathbf{r} = 60\mathbf{i} + 40\mathbf{j} + 8\mathbf{k}$.	
Find the distance of the helicopter from the treetop after it has been travelling for 45 seconds Give your answer in metres, correct to one decimal place.	i. 3

Question 5 (12 marks)

A boat ramp at the edge of a deep lake is inclined at an angle of 10° to the horizontal. A 250 kg boat trailer on the ramp is unhitched from a car and a man attempts to lower the trailer down the ramp using a rope parallel to the ramp, as shown in the diagram below.



Assume negligible friction forces in this situation.

Calculate the constant force, F newtons, that would be required to prevent the trailer from moving down the ramp. Give your answer correct to the nearest newton.	1 m
If the man exerts a force of 200 N via the rope, find the acceleration of the trailer down the ramp, assuming negligible friction forces and air resistance. Give your answer in ms ⁻² , correct to three decimal places.	2 ma
Using your result for acceleration from part b. , find the speed of the trailer in ms ⁻¹ , correct to two decimal places, after it has moved 30 m down the ramp, having started from rest.	2 ma

22

When the trailer rolls into the water, it stops, then sinks vertically from rest so that its depth *x* metres after *t* seconds is given by the differential equation

$$\frac{d^2x}{dt^2} = 1.4 \left(7 - \frac{dx}{dt}\right)$$

d. i. Show that the above differential equation can be written as

$\int dx$	7	1	dx
1.4 - = -1	+ ,	where	$v = \underline{\hspace{1cm}}$.
dv	$\gamma - \nu$		dt

2 marks

ii. Hence, show by integration that $1.4x = -v - 7\log_e(7 - v) + 7\log_e(7)$.

1 mark

When the trailer has sunk to a depth of D metres, it is descending at a rate of 5 ms⁻¹.

iii. Find D, correct to one decimal place.

1 mark

iv.	Write down a definite integral for the time, in seconds, taken for the trailer to sink to the depth of D metres and evaluate this integral correct to one decimal place.		
	the depth of D metres and evaluate this integral correct to one decimal place.	3 marks	
		_	

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Instructions

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

SPECMATH

Specialist Mathematics formulas

2

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$

curved surface area of a cylinder: $2\pi rh$

volume of a cylinder: $\pi r^2 h$

volume of a cone: $\frac{1}{3}\pi r^2 h$

volume of a pyramid: $\frac{1}{3}Ah$

volume of a sphere: $\frac{4}{3}\pi r^3$

area of a triangle: $\frac{1}{2}bc\sin A$

sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

cosine rule: $c^2 = a^2 + b^2 - 2ab \cos C$

Coordinate geometry

ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Circular (trigonometric) functions

$$\cos^2(x) + \sin^2(x) = 1$$

$$1 + \tan^2(x) = \sec^2(x)$$

$$\cot^2(x) + 1 = \csc^2(x)$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sin(2x) = 2\sin(x)\cos(x)$$
 $\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$

function	\sin^{-1}	\cos^{-1}	tan ⁻¹
domain	[-1, 1]	[-1, 1]	R
range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$[0,\pi]$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$$z = x + yi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$$

$$|z| = \sqrt{x^2 + y^2} = r$$

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$$

$$-\pi < \operatorname{Arg} z \le \pi$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$$

 $z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)

Calculus

$$\frac{d}{dx}(x^{n}) = nx^{n-1} \qquad \int x^{n} dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax} \qquad \int e^{ax} dx = \frac{1}{a}e^{ax} + c$$

$$\frac{d}{dx}(\log_{e}(x)) = \frac{1}{x} \qquad \int \frac{1}{x} dx = \log_{e}|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax) \qquad \int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax) \qquad \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = a\sec^{2}(ax) \qquad \int \sec^{2}(ax) dx = \frac{1}{a}\tan(ax) + c$$

$$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^{2}}} \qquad \int \frac{1}{\sqrt{a^{2}-x^{2}}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\frac{d}{dx}(\cos^{-1}(x)) = \frac{1}{\sqrt{1-x^{2}}} \qquad \int \frac{1}{\sqrt{a^{2}-x^{2}}} dx = \cos^{-1}\left(\frac{x}{a}\right) + c, a > 0$$

$$\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^{2}} \qquad \int \frac{a}{a^{2}+x^{2}} dx = \tan^{-1}\left(\frac{x}{a}\right) + c$$

product rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

quotient rule:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

chain rule:
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

Euler's method: If
$$\frac{dy}{dx} = f(x)$$
, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$

acceleration:
$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

constant (uniform) acceleration:
$$v = u + at$$
 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$

SPECMATH

Vectors in two and three dimensions

$$\underline{\mathbf{r}} = x\underline{\mathbf{i}} + y\underline{\mathbf{j}} + z\underline{\mathbf{k}}$$

$$|\overset{\mathbf{r}}{_{\sim}}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} z_{n} = r_{1}r_{2} \cos \theta = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}$$

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\dot{\mathbf{i}} + \frac{dy}{dt}\dot{\mathbf{j}} + \frac{dz}{dt}\dot{\mathbf{k}}$$

Mechanics

momentum: p = mv

equation of motion: R = m a

friction: $F \le \mu N$