Section A: Short answer and extended response questions. Technology free.

Specific instructions to students

- Answer **all** questions in the spaces provided.
- A decimal approximation will not be accepted if an **exact** answer is required to a question.
- In questions where more than one mark is available, appropriate working must be shown.

QUESTION 1

Total 2 marks

a Write 130° in radians, in terms of π .

1 mark

$$130 \times \frac{\pi}{180} = \frac{13\pi}{18}$$

b Write $\frac{15\pi}{6}$ radians in degrees.

1 mark

$$\frac{15\pi}{6} \times \frac{180}{\pi} = 450^{\circ}$$

QUESTION 2

Give the exact value of the following:

3 marks

a sin (210°)

$$\sin(180 + 30)^{\circ}$$

= $-\sin(30)^{\circ} = -\frac{1}{2}$

b $\cos\left(-\frac{5\pi}{3}\right)$

$$\cos\left(2\pi - \frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

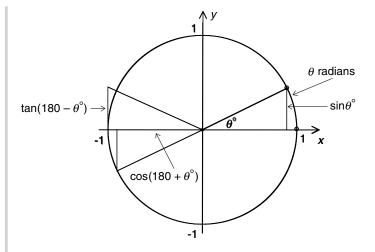
c $\tan\left(\frac{3\pi}{4}\right)$

$$\tan\left(\pi - \frac{\pi}{4}\right)$$
$$= -\tan\left(\frac{\pi}{4}\right) = -1$$

QUESTION 3

The diagram represents a unit circle with an angle θ° subtended at the centre, as shown. On the diagram mark the following: 4 marks

- **a** $sin(\theta^{\circ})$
- **b** $\cos(180^{\circ} + \theta^{\circ})$
- c $\tan(180^{\circ} \theta^{\circ})$
- **d** θ radians



QUESTION 4

Total 6 marks

a Given $\sin(x) = \frac{1}{3}$ and $\frac{\pi}{2} \le x \le \pi$, use the formula $\cos^2(x) + \sin^2(x) = 1$ to find $\cos(x)$. 3 marks

$$\cos^{2}(x) = 1 - \sin^{2}(x)$$

$$= 1 - \frac{1}{9} = \frac{8}{9}$$

$$\cos(x) = \pm \frac{\sqrt{8}}{3} = \pm \frac{2\sqrt{2}}{3}$$

Since *x* is in the second quadrant, $cos(x) = -\frac{2\sqrt{2}}{3}$.

b Solve $\cos(x) = 1, 0 \le x \le 2\pi$.

3 marks

$$x = \cos^{-1}(1)$$
$$x = 0, 2\pi$$

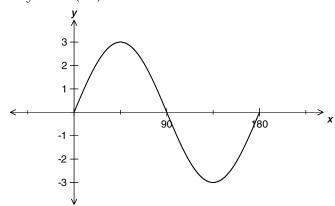
OUESTION 5

Total 8 marks

Sketch the graph of each of the following for one cycle.

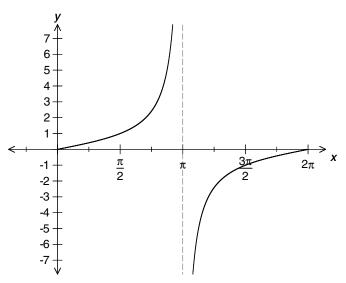
a
$$y = 3\sin(2x^{\circ})$$

4 marks



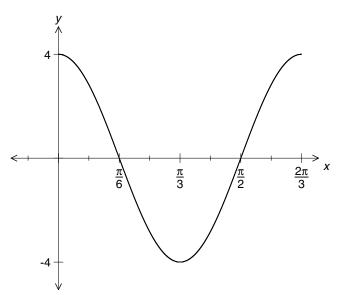
b $y = \tan(\frac{x}{2})$

4 marks



QUESTION 6

The graph of $y = -4\sin\left(3\left(x - \frac{\pi}{6}\right)\right)$ is shown. By observing the shape of the graph, write its equation in the form $y = a\cos(bx)$.



The amplitude is 4. The period is $\frac{2\pi}{3}$. Thus $b = \frac{2\pi}{\left(\frac{2\pi}{3}\right)} = 3$. $\therefore y = 4\cos(3x)$

QUESTION 7

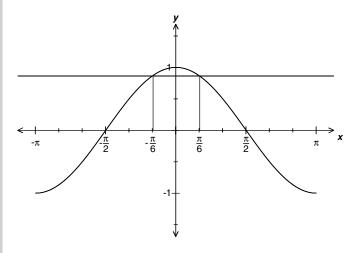
Total 10 marks

a Solve $\cos(x) = \frac{\sqrt{3}}{2}$, $x \in \left[0, \frac{\pi}{2}\right]$.

2 marks

$$x = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
$$= \frac{\pi}{6}$$

b Sketch the graphs of $y = \cos(x)$, $x \in [-\pi, \pi]$ and $y = \frac{\sqrt{3}}{2}$.



c Hence, find:

2 marks

$$\mathbf{i}\left\{x:\cos(x)=\frac{\sqrt{3}}{2}, x\in[-\pi,\pi]\right\}$$

By symmetry of the graph, $x = \pm \frac{\pi}{6}$.

ii
$$\left\{ x : \cos(x) > \frac{\sqrt{3}}{2}, x \in [-\pi, \pi] \right\}$$

2 marks

From the graph,
$$-\frac{\pi}{6} < x < \frac{\pi}{6}$$
.

QUESTION 8

Total 10 marks

a If (x + 1) is a factor of $x^3 - 4x^2 + x + 6$, use long division to show that (x - 2) and (x - 3) are the other linear factors.

4 marks

$$x^{2} - 5x + 6$$

$$x + 1)x^{3} - 4x^{2} + x + 6$$

$$x^{3} + x^{2}$$

$$-5x^{2} + x$$

$$-5x^{2} - 5x$$

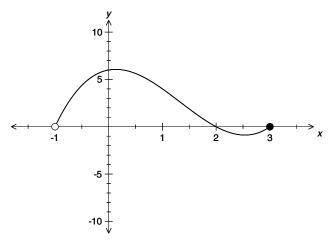
$$6x + 6$$

$$6x + 6$$

$$6x + 6$$

$$0$$
Thus $(x + 1)(x^{2} - 5x + 6) = (x + 1)(x - 2)(x - 3)$.

b Hence, sketch the graph of $f(x) = x^3 - 4x^2 + x + 6$ on the domain $x \in (1, 3]$.



Find the average rate of change from x = 0 to x = 2.

Average rate of change
$$=\frac{f(2)-f(0)}{2-0}=\frac{0-6}{2}=-3$$

Section B: Multiple-choice questions. CAS technology assumed.

Specific instructions to students

- A correct answer scores 1, and an incorrect answer scores 0.
- Marks are not deducted for incorrect answers.
- No marks are given if more than one answer is given.
- Choose the alternative which most correctly answers the question and mark your choice on the multiple-choice answer section at the bottom of each page, as shown in the example below.

Use pencil only.

QUESTION 9

The amplitude and period of the graph $f:[0, 2\pi] \to \mathbb{R}$, $f(x) = -3\sin(2\pi x) + 1$ are:

	Amplitude	Perio
A	-2	2π
В	4	2π
C	3	2π
D	-3	1
E	3	1

QUESTION 10

The number of asymptotes for the graph of $y = -\tan(2x)$, $-\frac{3\pi}{4} \le x \le \frac{3\pi}{4} \text{ is:}$

- **A** 0
- **B** 1
- **C** 2
- **D** 3
- **E** 4

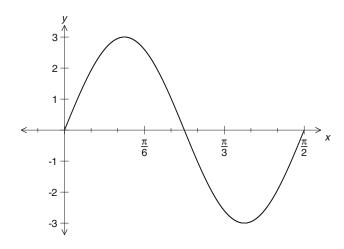
QUESTION 11

The range of the function $f[0, 2\pi] \rightarrow \mathbb{R}$ where $f(x) = a\cos(bx) + c$, where a, b and c are positive numbers, is:

- \mathbf{A} R
- **B** [-a, a]
- **C** [c a, c + a]
- **D** $[-a, 2\pi + a]$
- **E** [b a, b + a]

QUESTION 12

The graph of $y = 3\sin(4x)$ is shown for one cycle.



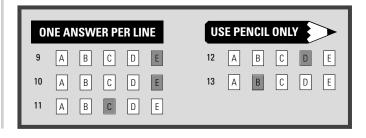
How many solutions are there for the equation $3\sin(4x) = 1, x \in [-\pi, \pi]$?

- **A** 2
- **B** 4
- **C** 6
- **D** 8
- **E** 10

QUESTION 13

The graph of $y = 2\sin(3x)$, $0 \le x \le 2\pi$ has x intercepts at:

- **A** 0, π , 2π
- **B** $0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}, 2\pi$
- **D** $0, \frac{\pi}{3}, \frac{\pi}{2}$
- **E** $0, \frac{\pi}{4}, \frac{2\pi}{3}$



Section B: Extended response questions. CAS technology assumed.

Specific instructions to students

- Answer **all** questions in the spaces provided.
- In questions where more than one mark is available, appropriate working must be shown.

QUESTION 14

Total 15 marks

a i Find the first quadrant (smallest positive) solution for $2\sin(x) = 1$. 1 mark

$$\sin(x) = \frac{1}{2}$$
$$x = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

ii Given that the general solution of $\sin(x) = a$ is $x = n\pi + (-1)^n \sin^{-1}(a)$, where $n \in \{0, \pm 1, \pm 2, ...\}$ and $a \in [-1, 1]$. Write the general solution for $2\sin(x) = 1$ and find x when $n = \{0, 1, 2\}$.

From part (a),
$$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$
.

General solution is $x = n\pi + (-1)^n \times \frac{\pi}{6}$

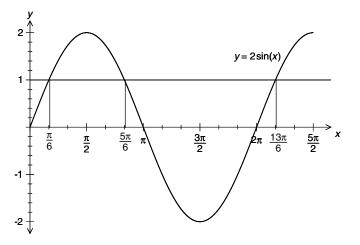
$$n = 0, x = \frac{\pi}{6}$$

$$n = 1, x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

$$n=2, x=2\pi+\frac{\pi}{6}=\frac{13\pi}{6}$$

iii Locate the solutions on the graph shown.

3 marks



b Let $f(x) = 1 - 2\cos(2x)$.

2 marks

i State the maximum and minimum values of f(x).

Maximum when $cos(2x) = -1 \Rightarrow f(x) = 1 + 2 = 3$.

... Maximum value is 3.

Minimum value when $cos(2x) = 1 \Rightarrow f(x) = 1 - 2 = -1$.

 \therefore Minimum value is -1.

ii Give the exact x value of the closest maximumpoint to the y axis.2 marks

Using CAS: SOLVE
$$1 - 2\cos(2x) = 3$$

$$x = \frac{\pi}{2}$$

iii Give the value of the smallest positive *x* intercept, correct to four decimal places. 2 marks

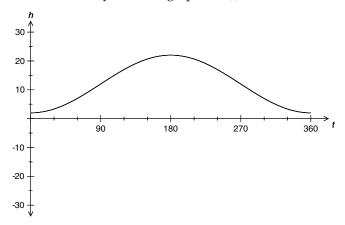
From graph (using CAS):
$$x = 0.5236$$

QUESTION 15

Total 11 marks

At a certain town in the Arctic circle, the number of hours of sunlight in a day varies and is given by the formula $h(t) = 12 - 10\cos\left(\frac{\pi}{180}t\right)$, where h is the number of hours of sunlight on any day t. (Assume h(t) is a continuous function.)

a Sketch one cycle of the graph of h(t). 3 marks



b What season of the year occurs when t = 0? 1 mark

Winter

What is the maximum and minimum amount of sunlight on any given day?2 marks

22 hours maximum; 2 hours minimum.

d Find values of *t* (to the nearest day) when there are 7 hours of sunlight. 2 marks

From graph: t = 60, 300.

For safety reasons, the streetlights are left on for 24 hours a day when the daily sunlight falls below 5 hours.

e Find, to the nearest day, the number of days the streetlights are left on for 24 hours. 3 marks

From the graph, find points of intersection between h(t) and h = 5. t = 46, 314.

Number of days = 46 + (360 - 314) = 92 days

QUESTION 16

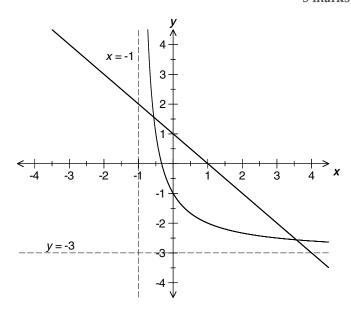
Total 12 marks

a State the transformations that give $y = \frac{2}{x+1}$ as the image of $y = \frac{1}{x}$.

Dilation of 2 from the x axis; translation of -1 from the y axis and -3 from the x axis.

b Sketch the graph of $f: (-1, \infty) \to \mathbb{R}$, $f(x) = \frac{2}{x+1} - 3$. Label any x and y intercepts and any asymptotes.

5 marks



c On the same axes, sketch the graph of y = 1 - x.

1 mark

See graph solution in part b.

d Hence, solve, correct to two decimal places, $\frac{2}{x+1} = 4 - x$.

$$\frac{2}{x+1} = 4 - x$$
.

3 marks

Find points of intersection from graph.

CAS:

Solve
$$\frac{2}{x+1} - 3 = 1 - x$$

 $\frac{2}{x+1} = 4 - x$

$$x = -0.56, 3.56$$