Section A: Short answer and extended response questions. Technology free.

Specific instructions to students

- Answer **all** questions in the spaces provided.
- A decimal approximation will not be accepted if an exact answer is required to a question.
- In questions where more than one mark is available, appropriate working must be shown.

OUESTION 1

Total 5 marks

a Simplify $\frac{2x}{(2xy^{-2})^{-1}}$, expressing the answer with positive indices. 2 marks

$$\frac{2x^{-2}y^{2}}{(2xy^{-2})^{-1}}$$

$$= \frac{2x^{-2}y^{2}}{2^{-1}x^{-1}y^{2}}$$

$$= 2^{1+1}x^{-2+1}y^{2-2}$$

$$= 2^{2}x^{-1}y^{0}$$

$$= \frac{4}{x}$$

b Evaluate $256^{\frac{3}{4}}$.

2 marks

$$(2^8)^{\frac{3}{4}} = 2^6$$
$$= 64$$

c Solve $2^{x+3} = 32$ for *x*.

1 mark

$$2^{x+3} = 2^5$$

equate indices
 $x + 3 = 5$
 $x = 2$

QUESTION 2

Total 5 marks

a Evaluate log₂32.

1 mark

$$\log_{2}(2)^{5} = 5\log_{2} 2$$

$$= 5 \times 1$$

$$= 5$$

b Solve the following equations for *x*.

i
$$\log_2 x = -3$$

2 marks

Using
$$\log_a x = y \Rightarrow x = a^y$$
,
 $x = 2^{-3}$
 $= \frac{1}{8}$

ii
$$\log_{10} x + \log_{10} 2 - \log_{10} (x+2) = 0$$

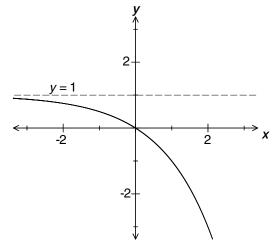
$$\log_{10}\left(\frac{2x}{x+2}\right) = \log_{10} 1$$

Equate logarithms

$$\frac{2x}{x+2} = 1$$
$$2x = x+2$$

$$x = 2$$

Total 8 marks

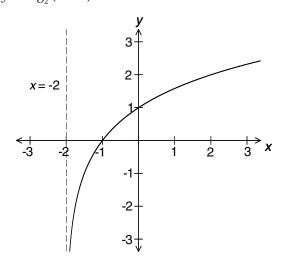

2 marks

Sketch the graph of each of the following. Label any *x* and *y* intercepts. Write the equations of any asymptotes. State the domain and range of each graph.

a $y = 1 - 2^x$

QUESTION 3

4 marks



Domain: $x \in \mathbb{R}$

Range: x < 1 or $x \in (-\infty, 1)$

b $y = \log_2(x + 2)$

4 marks

The y intercept is $\log_2(2) = 1$

The x intercept is

$$\log_2(x+2)=0$$

$$x + 2 = 2^0$$

$$x + 2 = 1$$

$$x = -1$$

Domain: $x > -2$ or $x \in (-2, \infty)$

Range: $y \in R$

QUESTION 4

Total 3 marks

The number of insects in a particular experiment is given by $N = N_0 10^{kt}$, where N is the number of insects at any time t days.

i If the number present at the start is 200, find the value of N_0 . 1 mark

$$(t = 0, N = 200); 200 = N_0 10^0$$

 $N_0 = 200$

ii If k = 0.01, find the number present after 300 days. 2 marks

$$N = 200 \times 10^{0.01}t$$

 $t = 300, N = 200 \times 10^{3}$
 $= 200000$

QUESTION 5

Total 8 marks

a Solve the simultaneous equations x - 2y + 2 = 0 and $y = \frac{3}{4}x - \frac{3}{2}$. 2 marks

$$x - 2y = -2$$
 Equation 1
 $4y = 3x - 6 \Rightarrow 3x - 4y = 6$ Equation 2

Equation
$$1 \times -2$$
: $-2x + 4y = 4$
 $3x - 4y = 6$

$$x = 10$$

$$10 - 2y = -2$$

$$2y = 12$$

$$y = 6$$

b Solve $\frac{3-2x}{3} + \frac{9-2x}{6} < 2$ for x.

2 marks

$$2(3 - 2x) + 9 - 2x < 12$$

$$6 - 4x + 9 - 2x < 12$$

$$15 - 6x < 12$$

$$-6x < -3$$

$$x > \frac{1}{2}$$

- The area of an annulus is $A = \pi R^2 \pi r^2$, where *R* is the radius of the outer circle and r is the radius of the inner circle.
 - **i** Transpose the formula to make *R* the subject.

3 marks

$$\pi R^{2} = A + \pi r^{2}$$

$$R^{2} = \frac{A + \pi r^{2}}{\pi}$$

$$R = \pm \sqrt{\frac{A + \pi r^{2}}{\pi}}$$

$$R = \sqrt{\frac{A + \pi r^{2}}{\pi}}, \text{ as } R > 0$$

ii Find the exact value of R when A = 1000 and 1 mark

$$R = \sqrt{\frac{1000 + 4\pi}{\pi}}$$

QUESTION 6

Total 4 marks

1 mark

$$\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 1 + 3 \times -1 & 1 \times 3 + 3 \times 2 \\ -1 \times 1 + 2 \times -1 & -1 \times 3 + 2 \times 2 \end{bmatrix} = \begin{bmatrix} -2 & 9 \\ -3 & 1 \end{bmatrix}$$

ii A^{-1} 1 mark

Determinant =
$$(1 \times 2) - (-1 \times 3) = 5$$
.
 $A^{-1} = \frac{1}{5} \begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix}$

b Solve the matrix equation, $\mathbf{A} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ for x and y.

2 marks

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 2 \times 3 + -3 \times 2 \\ 1 \times 3 + 1 \times 2 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 0 \\ 5 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

QUESTION 7

Total 8 marks

a By completing the square, show that $y = -x^2 + 4x - 1$ can be expressed as $y = -(x-2)^2 + 3$.

2 marks

$$y = -(x^{2} - 4x + 1)$$

$$= -[(x - 2)^{2} - 3]$$

$$= -(x - 2)^{2} + 3$$

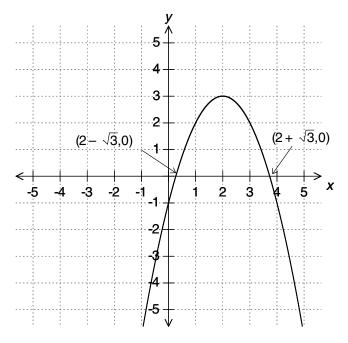
b Find the exact value of the *x* and *y* intercepts.

3 marks

y intercept:

when x = 0, y = -1

x intercepts:


$$-(x-2)^{2} + 3 = 0$$

$$(x-2)^{2} = 3$$

$$x-2 = \pm\sqrt{3}$$

$$x = 2 \pm\sqrt{3}$$

Sketch the graph of $y = -x^2 + 4x - 1$ on the axes provided.

OUESTION 8

Total 3 marks

a Use the factor theorem to show that the factors of $2x^3 - 5x^2 - 4x + 3$ are (2x - 1)(x + 1)(x - 3). 1 mark

$$P(\frac{1}{2}) = 2 \times \frac{1}{8} - 5 \times \frac{1}{4} - 4 \times \frac{1}{2} + 3$$
$$= \frac{1}{4} - \frac{5}{4} - 2 + 3 = 0$$
$$(2x - 1) \text{ is a factor.}$$

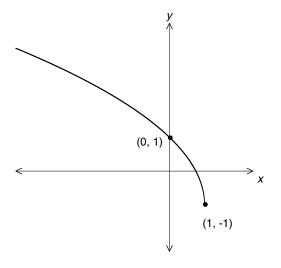
$$(2x - 1)$$
 is a factor.

$$P(3) = 54 - 45 - 12 + 3$$
$$= 0$$

(x - 3) is a factor.

$$P(-1) = -2 - 5 + 4 + 3 = 0$$

(x + 1) is a factor.


b Hence, find the *x* and *y* intercepts for the graph of $y = 2x^3 - 5x^2 - 4x + 3.$ 2 marks

The x intercepts are $\frac{1}{2}$, -1, 3; the y intercept is 3.

OUESTION 9

Total 7 marks

The graph of $y = a\sqrt{b-x} + c$ is shown.

a State the values of *b* and *c*.

$$y = a\sqrt{-(x-b)} + c$$
. Hence, $b = 1$ and $c = -1$.

b Show that a = 2.

2 marks

2 marks

$$(0, 1): 1 = a\sqrt{-(0 - 1)} - 1$$

 $a\sqrt{1} = 2$
 $a = 2$

State the transformations on $y = \sqrt{x}$ that give $y = a\sqrt{b-x} + c$ as its image. 3 marks

Dilation by 2 from the x axis, reflection in the y axis, translation of 1 in the x direction and a translation of -1 in the y direction.

Section B: Multiple-choice questions. CAS technology assumed.

Specific instructions to students

- A correct answer scores 1, and an incorrect answer scores 0.
- Marks are not deducted for incorrect answers.
- No marks are given if more than one answer is given.
- Choose the alternative which most correctly answers the question and mark your choice on the multiple-choice answer section at the bottom of each page, as shown in the example below.

Use pencil only.

QUESTION 10

The temperature, T° C, of a cooling liquid is given by the formula $T = 76(10)^{-kt} + 20$, where t is the time in minutes and k = 0.156. The temperature of the liquid after 5 minutes is closest to:

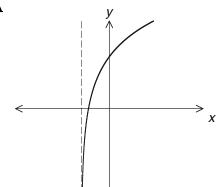
- **A** 13°C
- **B** 21°C
- **C** 33°C
- **D** 35°C
- **E** 53°C

QUESTION 11

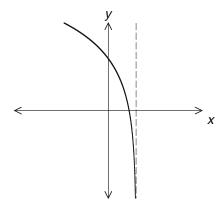
The range of the function $f: R \to R$, $f(x) = 2 \times 10^{-x} - 1$ is:

- \mathbf{A} R
- **B** $R \setminus \{2\}$
- **C** $R \setminus \{-1\}$
- **D** (−1, ∞)
- **E** [-1, ∞)

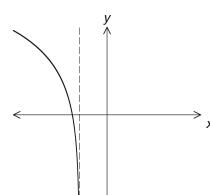
QUESTION 12

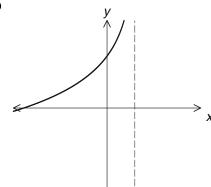

For $3 \times 3^{2x} = 9$, the value of *x* is:

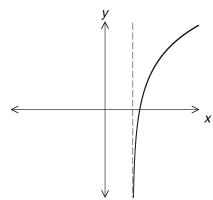
- **A** $\frac{1}{3}$
- **B** $\frac{1}{2}$
- **C** $\frac{1}{3}\log_9 2$
- $\mathbf{D} \ 2\log_3 3$
- **E** $\log_{3} 9 1$


QUESTION 13

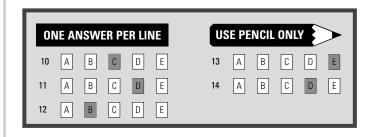
Which of the following graphs could be the graph of $f(x) = \log_2(x - a) + b$, where a and b are positive real numbers?


A


В


 \mathbf{C}

D


E

QUESTION 14

The value of the *x* intercept for the graph $g(x) = 3 - \log_2 (1 - x)$ is:

- **A** 2
- **B** -2
- $\mathbf{C} \frac{7}{8}$
- **D** -7
- **E** 9

Section B: Extended response questions. CAS technology assumed.

Specific instructions to students

- Answer **all** questions in the spaces provided.
- In questions where more than one mark is available, appropriate working must be shown.

QUESTION 15

Total 8 marks

It is observed that over a two-week period the number of a certain organism grows according to the rule $N(t) = 10 \times 2^{0.35t}$, where N is the number of organisms (measured in thousands) present after t days.

a What is the domain of the function?

1 mark

$$t \in [0, 14]$$

b Find the increase in the number of organisms from t = 4 to t = 7, correct to four decimal places. 2 marks

$$N(7) - N(4) = 54.6416 - 26.3902$$

= 28.2515 thousand organisms

Determine the average daily increase in the weight of the organisms over this period, correct to two decimal places.
 3 marks

Average daily increase
$$=$$
 $\frac{N(7) - N(4)}{7 - 4}$ $=$ $\frac{28.2515}{3}$ $=$ 9.42 thousand/day

d Find the number of days, correct to the nearest day, when the number of organisms is 100 000. 2 marks

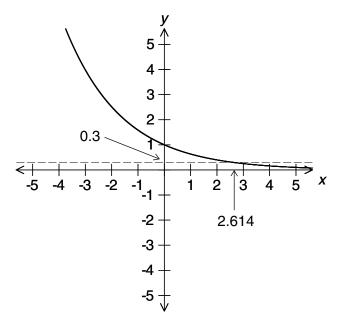
CAS: SOLVE
$$N(t) = 100$$
 for t .
 $t = 9.5$
After 9 days.

QUESTION 16

Total 7 marks

a Solve $10^{-0.2x} = 0.3$, giving the answer in the form $a \log_{10} \left(\frac{10}{b} \right)$.

$$-0.2x = \log_{10} 0.3$$


$$x = -\frac{1}{0.2} \log_{10} \left(\frac{3}{10}\right)$$

$$= 5 \log_{10} \left(\frac{3}{10}\right)^{-1}$$

$$= 5 \log_{10} \left(\frac{10}{3}\right)$$

b Give an approximate value for this answer, correct to three decimal places. 1 mark

c Sketch the graph of $y = 10^{-0.2x}$ on the axes provided. Locate the solution to part **a** on the graph. 2 marks

d Hence, find{ $x:10^{-0.2x} > 0.3$ }, correct to three decimal places. 1 mark

QUESTION 17

Total 11 marks

Consider the function $f: \mathbf{R} \to \mathbf{R}$ where $f(x) = 2^x - 2$.

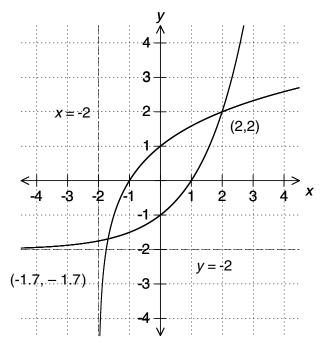
a State the domain and range of f^{-1} , the inverse of f.

2 marks

Domain of
$$f^{-1}: x > -2$$
 or $x \in (-2, \infty)$; range of $f^{-1}: x \in \mathbb{R}$

b Find the rule of f^{-1} .

2 marks


$$x = 2^{y} - 2$$

$$x + 2 = 2^{y}$$

$$y = \log_{2} (x + 2)$$

c Write an equation to find the points of intersection between f and f^{-1} . Solve the equation, correct to one decimal place. 3 marks

Three choices: f(x) = x or $f^{-1}(x) = x$ or $f(x) = f^{-1}(x)$ Using CAS: As f^{-1} includes log to the base 2, it may be easier to use f(x) = x, so solve $2^x - 2 = x$ for x. x = -1.7, 2.0 **d** Sketch the graph of f and f^{-1} on the set of axes provided. Label any x and y intercepts. Draw and write the equation of any asymptotes. 4 marks

QUESTION 18

Total 9 marks

A family of parabolas has the equation y = (x + 1)(x - a), where a is a positive number.

a Expand the brackets. Hence, write the equation in the form $y = x^2 + bx + c$. 1 mark

$$y = x^2 + x - ax - a$$

= $x^2 + (1 - a)x - a$

b Using y = (x + 1)(x - a), find the coordinates of the turning point and the values of the x intercepts in terms of a.

The x intercepts are x = -1, a.

The x value of the turning point is $\frac{a-1}{2}$ (midpoint of x intercepts).

The y value is:

$$y = \left(\frac{a-1}{2} + 1\right) \left(\frac{a-1}{2} - a\right)$$
$$= -\frac{(a+1)^2}{4} \text{ (using CAS)}.$$

c Write the equation of the family of graphs when $a = \{0, 1, 2\}$. Which one of these is an even function?

$$a = 0$$
; $y = x(x + 1)$

$$a = 1$$
; $y = (x - 1)(x + 1) = x^2 - 1$: even function

$$a = 2$$
; $y = (x - 2)(x + 1)$