

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Complex Numbers I [8.1]

Workbook

Outline:

Introduction to Complex Numbers Pg 2-7 **Imaginary Numbers Complex Numbers**

Representation of Complex Numbers

- Pg 8-29
- **Argand Diagram**
- Rectangular and Polar Forms
- **Converting Forms**
- Purely Real and Imaginary Numbers
- Conjugate

Operations of Complex Numbers

- Multiplication
- Division
- Multiplication and Division of i
- De Moivre's Theorem

Pg 30-42

Section A: Introduction to Complex Numbers

Sub-Section: Imaginary Numbers

What are imaginary numbers?

Imaginary Number

$$\sqrt{-1} = i$$

$$-1=i^2$$

lmaginary number is simply the square root of a negative number.

Question 1

Evaluate the following using imaginary numbers.

a.
$$\sqrt{-16}$$

b.
$$\sqrt{-4} - \sqrt{-25}$$

TIP: Simply substitute $-1 = i^2$.

History: Where did Imaginary Numbers come from?

- For many centuries, the general solution for quadratic equations existed. However, mathematicians struggled to discover the general solutions for cubic equations.
- In 1545, Gerolamo Cardano (1505-1576) came up with a general solution for cubic equations.
- \blacktriangleright In his general solution, he often encountered the square root of -1 which he deemed insignificant.

$$\sqrt[3]{2 + \sqrt{-121}} = a + \underline{\hspace{1cm}}$$

$$\sqrt[3]{2-\sqrt{-121}}=a-$$

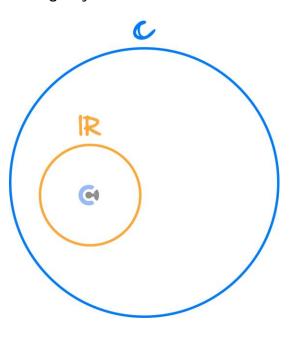
- However, Rafael Bombelli realises that the general solution for cubic equations still works despite encountering the square root of -1.
- From here, the concept of imaginary numbers was introduced.

Sub-Section: Complex Numbers

What are complex numbers?

Complex Number

- The set of complex number is given by C.
- lt is a combination of real and imaginary numbers.



z = x + yi

<u>Discussion:</u> Are all imaginary numbers complex number? And is it true for vice versa?

Question 2

Simplify the following complex numbers.

a. 4+5

b. $\sqrt{-9} + 3 - \sqrt{-25}$

c. $2 + 4i - \sqrt{-1}$

NOTE: Real numbers are subset of complex numbers.

<u>Discussion:</u> What are complex numbers comprised of?

CONTOUREDUCATION

Real and Imaginary Part of Complex Numbers

$$z = x + yi$$

For complex number x + yi,

$$Re(z) = x$$

$$Im(z) = y$$

Real part = x and Imaginary part = y.

Question 3

Evaluate the following:

a. Im(2+3i)

b.
$$Re(2 + 3i + 4i - 5i - 6i + 10i - 100i)$$

- **c.** $Im(\sqrt{-25})$
- **d.** Im(Im(2+3i))

Misconception

"Imaginary part of 2 + 3i (Im(2 + 3i)) is 3i."

TRUTH:

Both the real part and the imaginary part of a complex number are real numbers. So, Im(2+3i) = 3.

How do we get i on our technology?

<u>Calculator Commands:</u> Imaginary Numbers

- Mathematica
 - Capital i.

- **►** TI-Nspire
 - \bullet Press the π button twice.
- Casio Classpad
 - Under maths 2.

Question 4 Tech-Active.

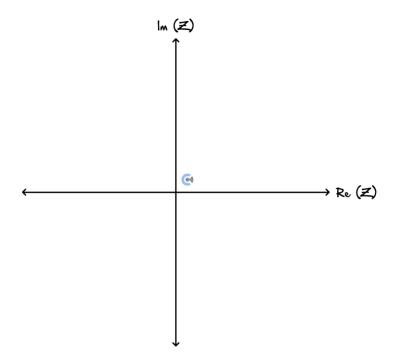
Evaluate 2 + 3i - 4i on your technology.

Section B: Representation of Complex Numbers

Sub-Section: Argand Diagram

How do we visualise complex numbers?

Argand Diagram

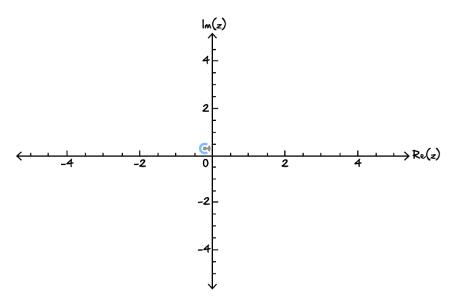


- We can position each complex number as a point on an Argand diagram.
- The vertical axis is the imaginary part of a complex number.
- The horizontal axis is the real part of a complex number.

CONTOUREDUCATION

Question 5

Consider the Argand diagram below.



Plot the following points on the above Argand diagram.

- **a.** -1 i
- **b.** 2 + i
- c. -3 4i

<u>Discussion:</u> How many points could a single complex number occupy on an Argand diagram?

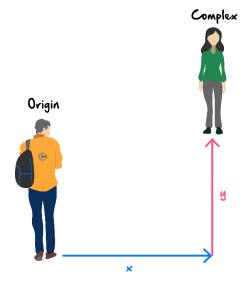
 $\underline{\text{Discussion:}} \ \text{When we represent complex numbers, what are we actually representing?}$

Sub-Section: Rectangular and Polar Forms

Analogy: Rectangular Form

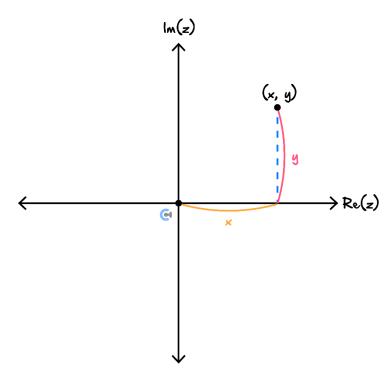
"Origin" wants to walk towards his love at first sight "Complex."

To do so, "Origin" can only walk horizontally and vertically.



- How can we represent "Complex's" position from the "Origin"?
- What shape does origin's path form?

Rectangular Form



lt is simply a way to represent a complex number's position on an Argand diagram.

$$z = x + yi = Re(z) + Im(z)i$$

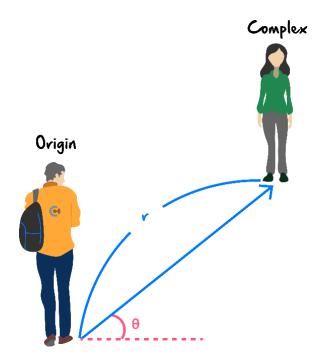
NOTE: We have been using the rectangular form!

Analogy: Polar Form

"Origin" wants to walk towards his love at first sight "Complex."

Origin

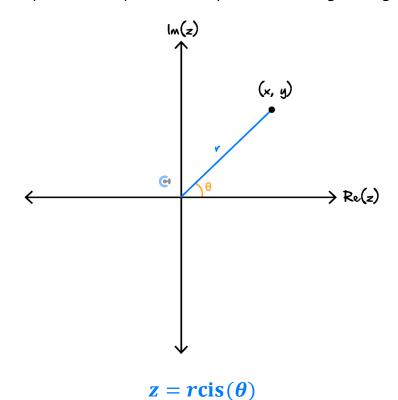
Now unlike last time, "Origin" is able to walk diagonally at a certain bearing.



- The distance "Origin" needs to walk is called the ______.
- The angle "Origin" needs to walk is called the ______.

Polar Form

It is simply a way to represent a complex number's position on an Argand diagram.



- The distance from the origin to the complex number is called the ______
- The angle from the origin to the complex number is called the
- Argument must be within the principal argument for final answers $(-\pi, \pi]$.

Principal Argument = $(-\pi, \pi]$

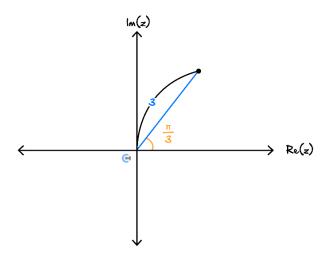
<u>Discussion:</u> Why do we only need the angles $(-\pi, \pi]$?

Question 6

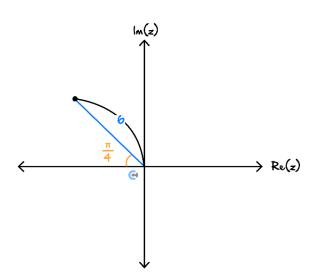
Consider the following complex numbers on the Argand diagram.

Evaluate the polar form for z.

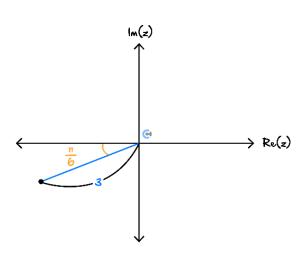
a.



b.



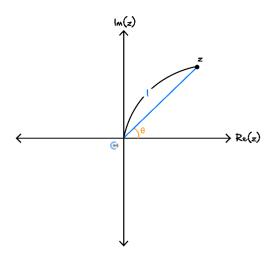
c.



What does cis stand for?

Exploration: Derivation of Polar form of Complex Numbers

Consider a complex number below.

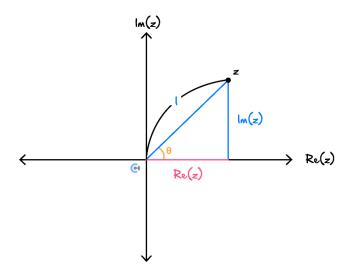


The polar form of the complex number is:

 $\mathbf{z} = \underline{\hspace{1cm}}$

CONTOUREDUCATION

- What would the Re(z) and Im(z) equal to?
 - **G** HINT: Use trigonometry.



$$Re(z) = \underline{\hspace{1cm}}$$

$$Im(z) = \underline{\hspace{1cm}}$$

Hence,

$$z = \cos(\theta) + i\sin(\theta)$$

What do you think c i s stand for?

Sub-Section: Converting Forms

Converting Polar Form to Rectangular Form

Simply change cis into $\cos + i \sin \theta$

$$\operatorname{cis}(\theta) = \operatorname{cos}(\theta) + i \operatorname{sin}(\theta)$$

Question 7 Walkthrough.

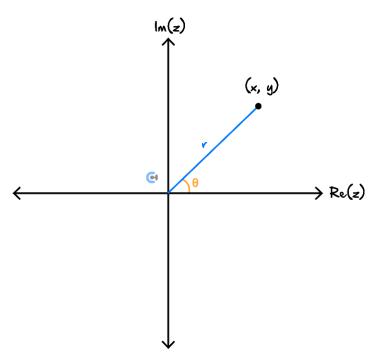
Let $z = 4\operatorname{cis}\left(\frac{\pi}{3}\right)$. Convert z into Cartesian form.

Question	8
Question	v

Let $u = 2\operatorname{cis}\left(-\frac{5\pi}{6}\right)$. Convert u into Cartesian form.

Now, the other way around!

Converting Rectangular Form to Polar Form



For,

$$z = a + bi$$

Radius is simply the size of the complex number.

$$r = |\mathbf{z}| = \sqrt{a^2 + b^2}$$

And its argument:

$$heta = an^{-1}\left(rac{b}{a}
ight)$$
 for $\mathbf{1}^{ ext{st}}$ and $\mathbf{4}^{ ext{th}}$ quadrant

$$\theta = \pi - \tan^{-1}\left(\frac{b}{a}\right)$$
 for 2nd quadrant

$$\theta = -\pi + \tan^{-1}\left(\frac{b}{a}\right)$$
 for 3rd quadrant

Question 9 Walkthrough.				
Convert $\sqrt{3} - i$ into polar form with principal arguments.				
Space for Personal Notes				
Space for Personal Notes				

Your turn!

Question 10

Convert the following into polar form with principal arguments:

a.
$$\sqrt{3} + i$$

b.
$$-2 + 2\sqrt{3} i$$

c.
$$-4-4i$$

d.
$$1 - \sqrt{3}i$$

Calculator Commands: Form Conversion

Mathematica

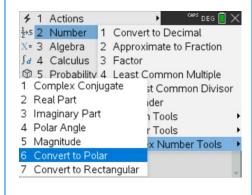
ToPolarCoordinates $[1 + \sqrt{3}I]$

 $\left\{2,\frac{\pi}{3}\right\}$

From Polar Coordinates $\left[\left\{2,\frac{\pi}{3}\right\}\right]$

 $\{1+\sqrt{3}\}$

TI-Nspire



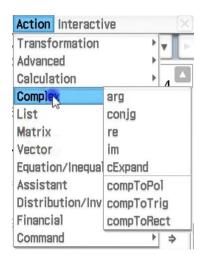
Rectangular → Polar.Menu296"i" is under the pi button.

If CAS is in degrees

In Radian form note: e^{i*} is the same as CIS.

Polar → Rectangular. Don't bother with menu 297, just split the complex into two pieces.

Casio Classpad



- Complex → compToPol (Changes to Polar Form)
- Complex → compToRect (Changes to Rectangular Form)

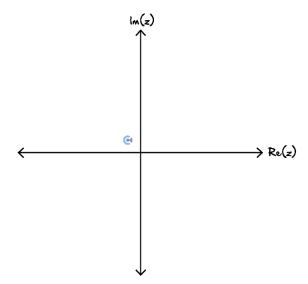
Question 11 Tech-Active.					
Convert $10 - 10\sqrt{3}i$ into polar form with principal arguments.					

Sub-Section: Purely Real and Imaginary Numbers

<u>Discussion:</u> What arguments do real and purely imaginary numbers have?

- Purely Imaginary:

Arguments for Purely Imaginary and Real



Real: πk

Positive Real: $2\pi k$

Negative Real: $\pi + 2\pi k$

Imaginary: $\pi/2 + \pi k$

Positive Imaginary: $\pi/2 + 2\pi k$

Negative Imaginary: $-\pi/2 + 2\pi k$

where, $k \in \mathbb{Z}$

Question	12	Walkthr	nugh
Question	14	vv aikuii	vugn

Solve for the value(s) of n such that, z is a real number.

$$z = 3\operatorname{cis}\left(\frac{\pi}{4}n\right)$$

Your turn!

Question 13

Solve for the value(s) of n such that, z is a purely imaginary number.

$$z = 2\operatorname{cis}\left(\frac{\pi}{6}n\right)$$

Sub-Section: Conjugate

Let's look at conjugate complex numbers!

Complex Conjugate

In Cartesian form:

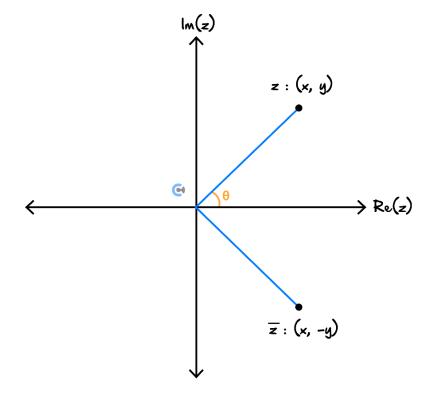
$$z = x + yi$$

$$\overline{z} =$$

In polar form:

$$z = r \operatorname{cis}(\theta)$$

$$\overline{\mathbf{z}} = \underline{\hspace{1cm}}$$



Conjugates are merely _______.

CONTOUREDUCATION

State the conjugate of 2 - 3i.

Exploration: Why are conjugates important?

$$z + \bar{z} \in R$$

$$z\overline{z} \in R$$

Sums and multiplications of conjugate pairs are always _______.

Question 15

Consider z = 3 + 2i.

a. Find $z + \bar{z}$.

b. Find $z\bar{z}$.

c. Find |z|. What do you notice?

Conjugate Properties

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

$$\overline{kz} = k\overline{z}$$

$$z + \bar{z} = 2Re(z)$$

$$z - \overline{z} = 2Im(z)$$

$$z\overline{z} = |z|^2 = |\overline{z}|^2$$

Section C: Operations of Complex Numbers

Sub-Section: Multiplication

Multiplication

Polar Form:

$$\mathbf{z}_1\mathbf{z}_2 = r_1r_2\operatorname{cis}(\theta_1 + \theta_2)$$

Rectangular Form:

$$(x+yi)(u+vi) = xu + yui + xvi + yvi^2 = xu - yv + (yu + xv)i$$

Discussion: Which form do we prefer for multiplication?

How does the multiplication work using polar form?

Question 16

Let $z_1 = \operatorname{cis}(a)$ and $z_2 = \operatorname{cis}(b)$.

a. Convert z_1 and z_2 into a rectangular form.

b. Hence, find z_1z_2 in rectangular form.

c. Simplify the terms using the compound angle formulae. What do you notice?

NOTE: The polar form multiplication is derived from the compound angle formulae!

Question 17

Evaluate the following:

a.
$$(2+3i)(1-i)$$

b.
$$2\operatorname{cis}\left(\frac{\pi}{6}\right) \cdot 3\operatorname{cis}\left(\frac{\pi}{3}\right)$$

Sub-Section: Division

Now, division!

Division

Polar Form:

$$\frac{\mathbf{z}_1}{\mathbf{z}_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$$

In rectangular form, we multiply the _____ on the top and bottom.

$$\frac{x+yi}{u+vi} = \frac{x+yi}{u+vi} \times \underline{\hspace{1cm}}$$

130

<u>Discussion:</u> Why would we want to multiply by the conjugate of the denominator? What does that achieve?

Question 18 Walkthrough.

Evaluate the following:

a.
$$\frac{2+5i}{3-2i}$$

b.
$$\frac{6\operatorname{cis}\left(\frac{\pi}{6}\right)}{2\operatorname{cis}\left(\frac{\pi}{4}\right)}$$

Question 19

Evaluate the following:

a.
$$\frac{3+7i}{1+i}$$

b.
$$\frac{1+4i}{2-i}$$

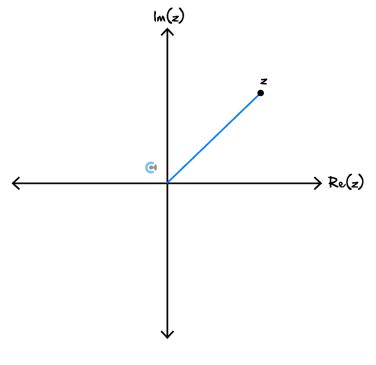
$$\mathbf{c.} \quad \frac{4\operatorname{cis}\left(\frac{\pi}{6}\right)}{3\operatorname{cis}\left(-\frac{\pi}{3}\right)}$$

Sub-Section: Multiplication and Division of i

Discussion: What is the polar form of *i*?

Exploration: Multiplication of *i*

Consider:



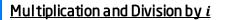
$$z = r \operatorname{cis}(\theta)$$

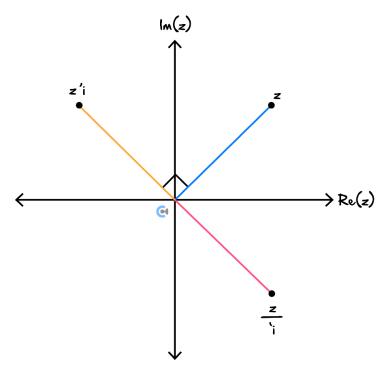
What does zi equal to, given that $i = \operatorname{cis}\left(\frac{\pi}{2}\right)$?

$$zi =$$

Sketch the zi on the axes above.

CONTOUREDUCATION





- \blacktriangleright Multiplication by i rotates the complex number by $\frac{\pi}{2}$ in the _______direction.
- \blacktriangleright Division by i rotates the complex number by $\frac{\pi}{2}$ in the ______direction.

 $\underline{\text{Discussion:}} \text{ What would happen if we multiply } z \text{ by } i \text{ 4 times?}$

Complex Number Properties

$$\begin{aligned} |z_1 z_2| &= |z_1| |z_2| \\ \left| \frac{z_1}{z_2} \right| &= \frac{|z_1|}{|z_2|} \\ |z_1 + z_2| &\leq |z_1| + |z_2| \\ \frac{1}{z} &= \frac{1}{r} \operatorname{cis}(-\theta) \end{aligned}$$

Multiplication by *i* rotates anticlockwise 90 degrees.

Sub-Section: De Moivre's Theorem

What happens if we multiply the same complex number n times? z^n ?

7

De Moivre's Theorem

For,

$$z = r \operatorname{cis}(\theta)$$

 $ightharpoonup z^n$ equals to:

$$z^n = r^n \operatorname{cis}(n\theta)$$

Exploration: De Moivre's Theorem

It is derived from the polar form multiplication.

$$z^{n} = z \cdot z \cdot \dots z$$

$$= r \operatorname{cis}(\theta) \cdot r \operatorname{cis}(\theta) \cdot \dots r \operatorname{cis}(\theta)$$

$$= r \cdot r \cdot \dots r \operatorname{cis}(\theta + \theta + \dots + \theta)$$

$$= r^{n} \operatorname{cis}(n\theta)$$

Question 20 Walkthrough.
It is known that, $z = 1 - \sqrt{3}i$.
Find z^3 in rectangular form.

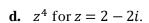
Question 21

Evaluate the following:

a.
$$z^4$$
 for $z = 3$ cis $\left(\frac{\pi}{12}\right)$.

b.
$$z^3$$
 for $z = 1 - \sqrt{3}i$.

c.
$$z^2$$
 for $z = -2\sqrt{3} - 2i$.



NOTE: Even if your answer is in rectangular form, it is easier to use De Moivre's theorem via polar form.

CONTOUREDUCATION

Cheat Sheet

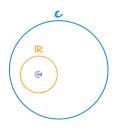
[8.1.1] - Find polar and rectangular forms of complex numbers

Imaginary Number:

$$\sqrt{-1} = i$$

$$-1 = i^2$$

- Imaginary number is simply the square root of a negative number.
- Complex Number:
 - The set of complex numbers is given by C.
 - d It is a combination of real and imaginary numbers.



$$z = x + yi$$

Real and Imaginary Part of Complex Numbers:

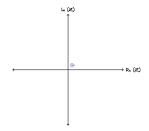
$$z = x + yi$$

Geomplex number x + yi,

$$Re(z) = x$$

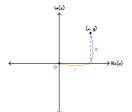
$$Im(z) = y$$

- Real part = x and Imaginary part = y.
- Argand Diagram:



We can position each complex number as a point on an argand diagram.

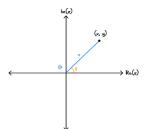
- The vertical axis is the imaginary part of a complex number.
- The horizontal axis is the real part of a complex number.
- Rectangular Form:



It is simply a way to represent a complex number's position on an argand diagram.

$$z = x + yi = \text{Re}(z) + \text{Im}(z)i$$

- Polar Form:
 - It is simply a way to represent a complex number's position on an argand diagram.



$$z = r \operatorname{cis}(\theta)$$

- The distance from the origin to the complex number is called the radius.
- The angle from the origin to the complex number is called the argument.
- Argument must be within the principal argument for final answers $(-\pi,\pi]$.

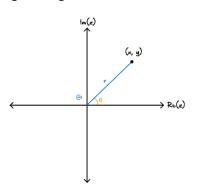
Principal Argument =
$$(-\pi, \pi]$$

- Converting Polar Form to Rectangular Form:
 - Simply change cis into $\cos + i \sin \theta$

$$cis(\theta) = cos(\theta) + isin(\theta)$$

Cheat Sheet

Converting Rectangular Form to Polar Form:



G For,

$$z = a + bi$$

Radius is simply the size of the complex number.

$$r = |z| = \sqrt{a^2 + b^2}$$

And its argument:

$$\theta = \tan^{-1}\left(\frac{b}{a}\right)$$
 for 1st and 4th quadrant.

$$\theta = \pi - \tan^{-1}\left(\frac{b}{a}\right)$$
 for 2^{nd} quadrant.

$$\theta = -\pi + an^{-1} \Big(rac{b}{a} \Big)$$
 for $3^{
m rd}$ quadrant.

Arguments for Purely Imaginary and Real:

Real:
$$\pi k$$

Positive Real: $2\pi k$

Negative Real: $\pi + 2\pi k$

Imaginary: $\pi/2 + \pi k$

Positive Imaginary: $\pi/2 + 2\pi k$

Negative Imaginary: $-\pi/2 + 2\pi k$

where, $k \in \mathbb{Z}$

[8.1.2] - Evaluate operations of complex numbers

Complex Conjugate:

In cartesian form:

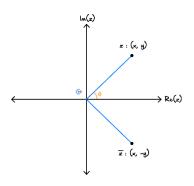
$$z = x + yi$$

$$\overline{z} = x - yi$$

In polar form:

$$z = r \operatorname{cis}(\theta)$$

$$\overline{\mathbf{z}} = r \operatorname{cis}(-\boldsymbol{\theta})$$



- Conjugates are merely reflected around Re-axis.
- Conjugate Properties:

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

$$\overline{kz} = k\overline{z}$$

$$z + \bar{z} = 2\text{Re}(z)$$

$$z - \overline{z} = 2 \operatorname{Im}(z)$$

$$z\overline{z} = |z|^2 = |\overline{z}|^2$$

Multiplication:

Polar Form:

$$\mathbf{z}_1 \mathbf{z}_2 = r_1 r_2 \mathbf{cis}(\theta_1 + \theta_2)$$

Rectangular Form:

$$(x+yi)(u+vi) = xu + yui + xvi + yvi2$$

= xu - yv + (yu + xv)i

CONTOUREDUCATION

Cheat Sheet

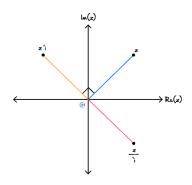
- Division:
 - Polar Form:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$$

In rectangular form, we multiply the conjugate of the denominator on the top and bottom.

$$\frac{x+yi}{u+vi} = \frac{x+yi}{u+vi} \times \frac{u-vi}{u-vi}$$

Multiplication and Division by i:



- Multiplication by i rotates the complex number by $\frac{\pi}{2}$ in the anticlockwise direction.
- igcirc Division by i rotates the complex number by $\frac{\pi}{2}$ in the clockwise direction.
- Complex Number Properties:

$$|z_1z_2| = |z_1||z_2|$$

$$\left|\frac{\mathbf{z}_1}{\mathbf{z}_2}\right| = \frac{|\mathbf{z}_1|}{|\mathbf{z}_2|}$$

$$|z_1 + z_2| \le |z_1| + |z_2|$$

$$\frac{1}{z} = \frac{1}{r} \operatorname{cis}(-\theta)$$

Multiplication by i rotates anticlockwise 90 degrees.

[8.1.3] - Apply De Moivre's Theorem

- De Moivre's Theorem:
 - G For,

$$z = r \operatorname{cis}(\theta)$$

 \subseteq z^n equals to:

$$z^n = r^n \operatorname{cis}(n\theta)$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- ▶ Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

