

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Complex Numbers I [8.1]

Test

29.5 Marks. 1 Minute Reading. 24 Minutes Writing.

Results:

Test Questions	/ 23.5
Extended Test Questions	/6

Section A: Test Questions (23.5 Marks)

Question 1 (4.5 marks)

Tick whether the following statements are **true** or **false**.

	Statement	True	False
a.	−9 is not a complex number.		
b.	The imaginary part of $z = -5 + 6i$ is $6i$.		
c.	$\operatorname{Arg}(2-3i) = -\tan^{-1}\left(\frac{3}{2}\right).$		
d.	To add/subtract two complex numbers from each other, we simply have to add/subtract their real and imaginary parts.		
e.	To divide two complex numbers, we simply have to divide their real and imaginary parts.		
f.	For any complex number to be a real number, its argument must be a multiple of π .		
g.	If you multiply any complex number by i 10 times, it becomes the negative number of itself.		
h.	$z + \bar{z} = 2\operatorname{Re}(z)$.		
i.	$z - \bar{z} = \operatorname{Re}(z)$.	_	_

Question 2 (2 marks)

Express each of the following in their simplest term.

- **a.** $\sqrt{-175}$. (1 mark)
- **b.** $\sqrt{2}(\sqrt{-50} + \sqrt{5})$. (1 mark)

Question 3 (2 marks)		
If $z = 2 - 3i$, then find z^2 .		
·		

Question 4 (3 marks)	
Simplify: $\frac{1-2i}{3+4i} - \frac{2+i}{5i}.$	

Question 5 (2 marks)		
Find the conjugate of $z_1 - z_2$ if $z_1 = 2 + 3i$ and $z_2 = 5 + 2i$.		

Question 6 (1 mark)	
Simplify: i ⁵⁹ .	

Space for Personal Notes		

Question 7 (3 marks)		
Suppose $z = 1 + \sqrt{3}i$ and $\frac{w}{z} = 2 + 2i$.		
Find the exact value of the modulus of w and the exact value of the argument of w .		

Question 8 (3 marks)		
et z = 1 - i.		
Find the value of z^6 .		

Question 9 (3 marks)		
Consider the complex number $z = 4 + 4i$.		
Find the value(s) of k such that z^k is a negative imaginary number.		

Section B: Extended Test Questions (6 Marks)

Qu	estion 10 (6 marks)
a.	Show that $\frac{4\sqrt{2}+4\sqrt{2}i}{\sqrt{3}+i} = \sqrt{6} + \sqrt{2} + (\sqrt{6} - \sqrt{2})i$. Do NOT use polar form. (2 marks)
b.	By converting the numerator and denominator to polar form, express $\frac{4\sqrt{2}+4\sqrt{2}i}{\sqrt{3}+i}$ in polar form. (2 marks)

c. Hence, find the values of $\sin\left(\frac{\pi}{12}\right)$ and $\cos\left(\frac{\pi}{12}\right)$. (2 marks)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

