

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Complex Numbers I [8.1]

Homework Solutions

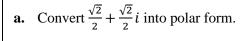
Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2-Pg 23
Supplementary Questions	Pg 24-Pg 38

Section A: Compulsory Questions

Sub-Section [8.1.1]: Find Polar and Rectangular Forms of Complex Numbers

Question 1



 $cis\left(\frac{\pi}{4}\right)$

b. Let $u = 3\operatorname{cis}\left(\frac{\pi}{3}\right)$. Convert u into a rectangular form.

 $u = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$

c. Convert $-\sqrt{3} + i$ into polar form. $2\operatorname{cis}\left(\frac{5\pi}{6}\right)$

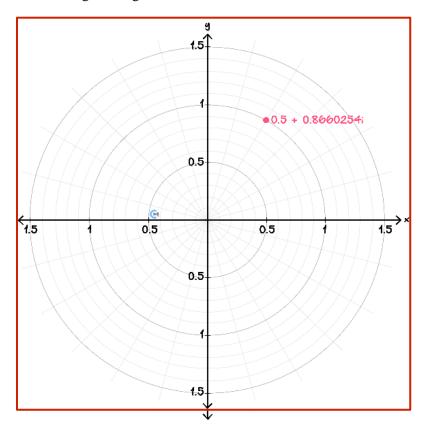
Question 2

a.

i. Convert $\operatorname{cis}\left(\frac{7\pi}{3}\right)$ into a rectangular form.

 $\frac{1}{2} + \frac{\sqrt{3}}{2}i$

ii. Plot your answer on the Argand diagram below:

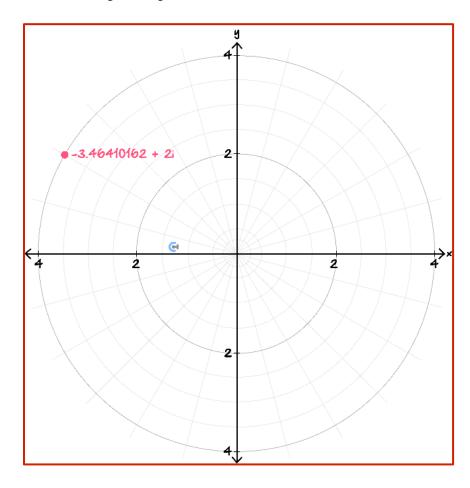


b.

i. Convert $-2\sqrt{3} + 2i$ into polar form.

 $4\operatorname{cis}\left(\frac{5\pi}{6}\right)$

ii. Plot your answer on the Argand diagram below:

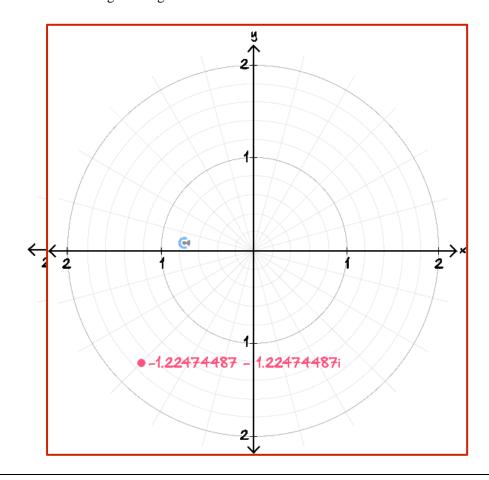


c.

i. Convert $-\frac{\sqrt{6}}{2} - \frac{\sqrt{6}}{2}i$ into polar form.

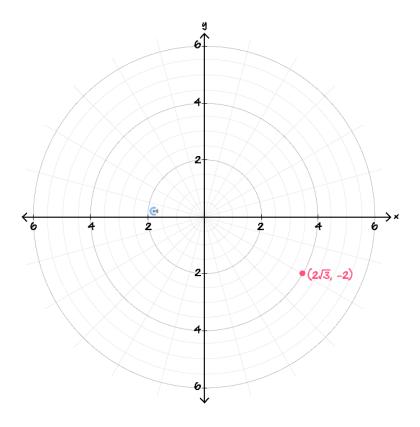
 $\sqrt{3}$ cis $\left(-\frac{3\pi}{4}\right)$

ii. Plot your answer on the Argand diagram below:



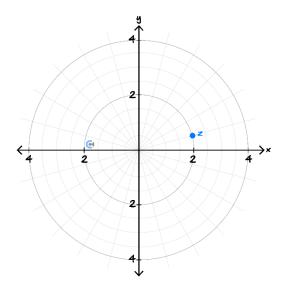
Question 3

a. Below is a complex number plotted on an Argand diagram. State the number in polar form.



 $4\operatorname{cis}\left(\frac{-\pi}{6}\right)$

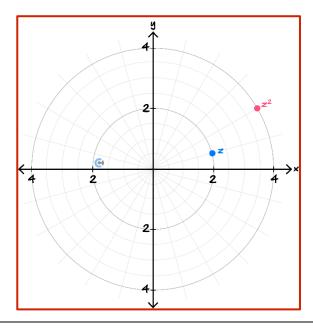
b. The complex number z is on the Argand diagram below:



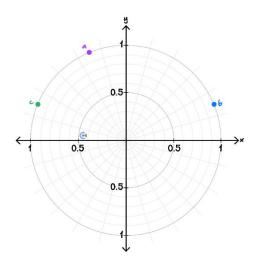
i. State z in polar form.

$z = 2\operatorname{cis}\left(\frac{\pi}{1}\right)$	<u>.</u> 2

ii. Plot z^2 on the Argand diagram below:



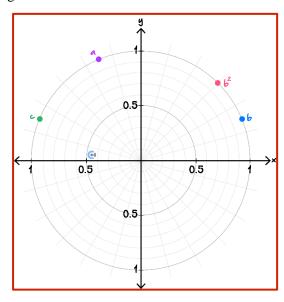
c. 3 complex numbers, *a*, *b* and *c* are plotted on the Argand diagram below:



i. State which complex number corresponds to $cis\left(\frac{23\pi}{8}\right)$.

_		
	c corresponds to cis	$\left(\frac{23\pi}{}\right)$
	c corresponds to cis	\

ii. Plot b^2 on the Argand diagram below:



Question 4 Tech-Active.

a. Convert $\operatorname{cis}\left(\frac{15\pi}{8}\right)$ into a rectangular form.

 $\frac{\sqrt{\sqrt{2}+2}}{2} - \frac{\sqrt{2-\sqrt{2}}}{2}i$

b. Convert $\frac{\sqrt{6}-\sqrt{2}}{2} + \frac{\sqrt{6}+\sqrt{2}}{2}i$ into polar form.

 $2\operatorname{cis}\left(\frac{5\pi}{12}\right)$

Sub-Section [8.1.2]: Evaluate Operations of Complex Numbers

Question 5

a. Let $u = 5\operatorname{cis}\left(\frac{3\pi}{8}\right)$ and $v = 2\operatorname{cis}\left(\frac{2\pi}{8}\right)$. Evaluate uv, leaving your answer in polar form.

 $10 \operatorname{cis}\left(\frac{5\pi}{8}\right)$

b. Let $u = 3\operatorname{cis}\left(\frac{5\pi}{6}\right)$ and $v = 2\operatorname{cis}\left(\frac{5\pi}{12}\right)$. Evaluate $\frac{u}{v}$, leaving your answer in polar form.

 $\frac{3}{2}$ cis $\left(\frac{5\pi}{12}\right)$

c. Let $u = 4 + \frac{7}{2}i$ and $v = \frac{3}{5} + i$. Evaluate u + v.

 $\frac{23}{5} + \frac{9}{2}i$

Question 6

a. Let u = 1 + 3i and $v = \sqrt{3} + \sqrt{3}i$. Evaluate uv, leaving your answer in rectangular form.

 $-2\sqrt{3} + 4\sqrt{3}i$

b. Simplify $\frac{1+2i}{1-i}$.

 $-\frac{1}{2} + \frac{3}{2}i$

c. Let $u = \operatorname{cis}\left(\frac{3\pi}{4}\right)$ and $v = 2\operatorname{cis}\left(\frac{2\pi}{3}\right)$. Evaluate u + v, leaving your answer in rectangular form.

 $-\frac{\sqrt{2}}{2}-1+\left(\sqrt{3}+\frac{\sqrt{2}}{2}\right)i$

Question 7

a. Let $u = \frac{\sqrt{\sqrt{2}+2}}{2} + \frac{\sqrt{2-\sqrt{2}}}{2}i$. Evaluate u^2 , leaving your answer in polar form.

 $cis\left(\frac{\pi}{4}\right)$

b. Simplify $\frac{-1+\sqrt{3}i}{2-\sqrt{3}i}$.

 $-\frac{5}{7} + \frac{\sqrt{3}}{7}i$

c. Let $u = \sqrt{2} \operatorname{cis}\left(\frac{\pi}{4}\right)$ and $v = 1 + (1 - 2\sqrt{3})i$. Evaluate $u + \bar{v}$, leaving your answer in polar form.

 $4\operatorname{cis}\left(\frac{\pi}{3}\right)$

Question 8 Tech-Active.

a. Evaluate $\operatorname{cis}\left(\frac{5\pi}{7}\right) + \operatorname{cis}\left(\frac{2\pi}{7}\right)$, leaving your answer in rectangular form to 2 decimal places.

1.56i

b. Let $u = 5\sqrt{3} - \sqrt{2}i$ and $v = \sqrt{7} - i$. Simplify $\frac{u}{v}$.

 $\frac{5\sqrt{21} + \sqrt{2}}{8} + \frac{5\sqrt{3} - 14}{8}i$

Sub-Section [8.1.3]: Apply De Moivre's Theorem

Question 9

a. Let $a = \sqrt{2} \operatorname{cis} \left(\frac{\pi}{6}\right)$. Evaluate a^4 , leaving your answer in rectangular form.

 $-2+2\sqrt{3}i$

b. Let $v = \sqrt{3} \operatorname{cis}\left(\frac{5\pi}{7}\right)$. Evaluate v^3 , leaving your answer in polar form with the principal argument.

 $3\sqrt{3}\operatorname{cis}\left(\frac{\pi}{7}\right)$

:. :	Evaluate $(1+i)^5$, leaving your answer in rectangular form.
	-4-4i

Spa	ace for Personal Notes

Question 10

a. Let $u = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$. Evaluate u^3 , leaving your answer in rectangular form.

-i

b. Let $v = 2^{\frac{1}{11}} \text{cis}\left(\frac{\pi}{6}\right)$. Evaluate v^{22} , leaving your answer in rectangular form.

 $2-2\sqrt{3}i$

c. Evaluate $\frac{\left(1+\sqrt{3}i\right)^3}{\left(-\sqrt{2}+\sqrt{2}i\right)^4}$, leaving your answer in rectangular form.

 $\frac{1}{2}$

Question 11

a. Find the value(s) of n such that $\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^n = \operatorname{cis}\left(\frac{\pi}{3}\right)$.

 $n=2+12k, k\in Z$

b. Suppose $u = \operatorname{cis}\left(\frac{2\pi}{7}\right)$. Find the value(s) of n such that u^n is a real number.

 $n = \frac{7}{2}k$, where k is an integer.

c. Find the value(s) of *n* such that $(3+3i)^n = ai$, where $a \in R$ and a < 0.

 $n = 6 + 8k, k \in Z$

Question 12 Tech-Active.		
Evaluate $\left(\sqrt{2}\operatorname{cis}\left(\frac{\pi}{12}\right)\right)^5$, leaving your answer	wer in rectangular form.	
	$2\sqrt{3}-2+(2\sqrt{3}+2)i$	

Space for Per	sonal Notes		

Sub-Section: Final Boss

Question 13

Consider the equation $z^6 - 1 = 0$, $z \in C$.

a. Use De Moivre's theorem to verify that $z = \operatorname{cis}\left(\frac{\pi}{3}\right)$ is a solution to this equation.

 $z^6 - 1 = \operatorname{cis}(2\pi) - 1 = 1 - 1 = 0$

b. Find the other five solutions to the equation.

z = 1, cis $\left(\frac{2\pi}{3}\right)$, -1, cis $\left(\frac{4\pi}{3}\right)$, cis $\left(\frac{5\pi}{3}\right)$ using the fact that roots are evenly spaced.

c. Show that cis(a) + cis(-a) = 2 cos(a).

 $LHS = \operatorname{cis}(a) + \operatorname{cis}(-a) = \cos(a) + i\sin(a) + \cos(a) - i\sin(a) = 2\cos(a)$

d. Hence, show that the sum of the roots of $z^6 - 1$ is 0.

 $1 - 1 + \operatorname{cis}\left(\frac{\pi}{3}\right) + \operatorname{cis}\left(\frac{-\pi}{3}\right) + \operatorname{cis}\left(\frac{4\pi}{3}\right) + \operatorname{cis}\left(\frac{4\pi}{3}\right) = 2\operatorname{cos}\left(\frac{\pi}{3}\right) + 2\operatorname{cos}\left(\frac{4\pi}{3}\right)$ $= 2\left(\operatorname{cos}\left(\frac{\pi}{3}\right) - \operatorname{cos}\left(\frac{\pi}{3}\right)\right) = 0 \text{ from symmetry properties (supplementary angle)}.$

Question 14

De Moivre's theorem states that $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.

a. Show that De Moivre's theorem is true for n = 2.

$$(\cos(\theta) + i\sin(\theta))^2 = \cos^2(\theta) - \sin^2(\theta) + i 2\sin(\theta)\cos(\theta)$$
$$= \cos(2\theta) + i\sin(2\theta)$$

b. Using induction, prove De Moivre's theorem for $n \in \mathbb{N}$.

Test for
$$n = 1$$
. Then assume true for $n = k$, prove for $n = k + 1$.
$$(\cos(\theta) + i\sin(\theta))^{k+1} = (\cos(\theta) + i\sin(\theta))(\cos(k\theta) + i\sin(k\theta)).$$

$$= \cos(\theta)\cos(k\theta) + i^2\sin(\theta)\sin(k\theta) + i\sin(\theta)\cos(k\theta) + i\sin(k\theta)\cos(\theta)$$

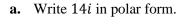
$$= \cos(\theta)\cos(k\theta) - \sin(\theta)\sin(k\theta) + i(\sin(\theta)\cos(k\theta) + \sin(k\theta)\cos(\theta))$$

$$= \cos((k+1)\theta) + i\sin((k+1)\theta)$$

Section B: Supplementary Questions

Sub-Section [8.1.1]: Find Polar and Rectangular Forms of Complex Numbers

Question 15



 $14 \operatorname{cis}\left(\frac{\pi}{2}\right)$

b. Convert $-2 - 2\sqrt{3}i$ into polar form.

 $4\operatorname{cis}\left(\frac{-2\pi}{3}\right)$

c.	Convert $\sqrt{2}\operatorname{cis}\left(\frac{-\pi}{4}\right)$ into a rectangular form.
	1-i

Question 16

a. Convert $-\frac{3\sqrt{3}}{2} + \frac{3}{2}i$ into polar form.

 $3\operatorname{cis}\left(\frac{5\pi}{6}\right)$

b. Convert $\operatorname{cis}\left(\frac{420\pi}{4}\right)$ into Cartesian form.

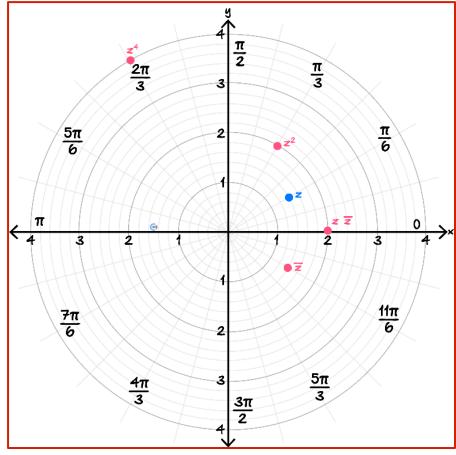
-1

c. Convert $-\frac{5\sqrt{2}}{2} - \frac{5\sqrt{2}}{2}i$ into polar form.

 $5\operatorname{cis}\left(\frac{-3\pi}{4}\right)$

Question 17

The complex number $z = \sqrt{2} \operatorname{cis}\left(\frac{\pi}{6}\right)$ is shown in the Argand diagram below:



On the same set of axes, plot:

- **a.** z^2
- **b.** z^4
- c. \bar{z}
- **d.** $z\bar{z}$

Question 18

a. Use a compound formula to show that $\sin\left(\frac{7\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$.

LHS = $\sin\left(\frac{\pi}{4} + \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2} \frac{1}{2} + \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} = \text{RHS}$

b. Hence, show that $\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2}-\sqrt{6}}{4}$, using the fact that $\sqrt{\frac{2-\sqrt{3}}{4}} = \frac{\sqrt{6}-\sqrt{2}}{4}$.

LHS = $-\sqrt{1-\sin^2\left(\frac{7\pi}{12}\right)} = -\sqrt{\frac{2-\sqrt{3}}{4}} = \frac{\sqrt{2}-\sqrt{6}}{4}$ since cos is negative in the second quadrant.

c. Hence, state $\operatorname{cis}\left(\frac{17\pi}{12}\right)$.

 $\frac{\sqrt{2}-\sqrt{6}}{4}-\frac{\sqrt{6}+\sqrt{2}}{4}$

Sub-Section [8.1.2]: Evaluate Operations of Complex Numbers

Question 19

a. Let $u = 3\operatorname{cis}\left(\frac{\pi}{5}\right)$ and $v = 2\operatorname{cis}\left(\frac{-4\pi}{5}\right)$. Evaluate uv, leaving your answer in polar form.

 $6\operatorname{cis}\left(\frac{-3\pi}{5}\right)$

b. Let $u = \operatorname{cis}\left(\frac{-3\pi}{4}\right)$ and $v = \operatorname{cis}\left(\frac{\pi}{4}\right)$. Evaluate $\frac{u}{v}$.

-1

c.	Let $u = \sqrt{3} + 2i$ and $v = \sqrt{48} - i$. Evaluate $u + v$.
	$5\sqrt{3}+i$

Space for Personal Notes

Question 20

a. Find $\frac{1-i}{2+3i}$.

 $-\frac{1}{13} - \frac{5}{13}i$

b. Let $a = (3 - \sqrt{2}i)$ and $b = (2 + \sqrt{5}i)$. Evaluate ab, leaving your answer in rectangular form.

 $\sqrt{10} + 6 + (3\sqrt{5} - 2\sqrt{2})i$

c. Evaluate $2\operatorname{cis}\left(\frac{3\pi}{4}\right) + \operatorname{cis}\left(\frac{\pi}{3}\right)$, leaving your answer in an appropriate form.

 $\frac{1}{2} - \sqrt{2} + \left(\frac{\sqrt{3}}{2} + \sqrt{2}\right)i$

Question 21

a. Show that $z\bar{z} = |z|^2$ for any complex number z.

LHS = $(a + bi)(a - bi) = a^2 + b^2 = \text{RHS}$ Also works in polar form.

b. Evaluate $\frac{3+10i}{2-5i}$.

 $-\frac{44}{29} + \frac{35}{29}i$

c. It is known that z = 1 - 2i. Find z^4 in rectangular form.

-7 - 24i

I would recommend finding z^2 then squaring it again.

Question 22

a. Show that for any complex number z = a + bi where $a, b \in \mathbb{R}$, $\text{Im}(z^3) = b(3a^2 - b^2)$.

Show by expansion.

b. Hence, prove or disprove the statement $z^3 \in R$ if and only if $z \in R$.

We can show this is false with counterexample, e.g., $z = 1 + \sqrt{3}i$.

Sub-Section [8.1.3]: Apply De Moivre's Theorem

Question 23

Evaluate the following, leaving your answer in an appropriate form.

a. $\left(3\operatorname{cis}\left(\frac{\pi}{6}\right)\right)^3$

27*i*

b. $(-2+2i)^3$

16 + 16i

c. $\left(2\operatorname{cis}\left(\frac{-\pi}{10}\right)\right)^2$

 $4\operatorname{cis}\left(\frac{-\pi}{5}\right)$

Question 24

a. Evaluate $(1 + \sqrt{3}i)^{48}$, leaving your answer in the form a^b where a and b are integers.

 2^{48}

b.

i. Convert $2\sqrt{2} - 2\sqrt{2}i$ to polar form.

 $4\operatorname{cis}\left(-\frac{\pi}{4}\right)$

ii. Hence, evaluate $\frac{(2\sqrt{2}-2\sqrt{2}i)^7}{(-1+\sqrt{3}i)^{12}}$. State your answer in the form a+bi, where $a,b\in\mathbb{R}$.

 $2\sqrt{2} + 2\sqrt{2}i$

c. Evaluate $\left(\frac{\sqrt{2}+\sqrt{2}i}{\sqrt{3}+1}\right)^5$, leaving your answer in polar form.

 $\cos\left(\frac{5}{1}\right)$

Question 25

a. Find the value of *n* such that $(\sqrt{2} + \sqrt{2}i)^n = 1024 \operatorname{cis}(\theta)$ where $\theta \in (-\pi, \pi]$, and state θ .

$$n=10, \theta=\pi/2$$

b. Solve for the value(s) of n such that z is purely imaginary.

$$z = 9\operatorname{cis}\left(\frac{\pi}{10}n\right)$$

$$\operatorname{solve}\left(\frac{\pi}{10} \cdot n = \frac{\pi}{2} + \pi \cdot k, n\right) \qquad n = 5 \cdot (2 \cdot k + 1)$$

$$k \in \mathbb{Z}$$

c. Let $z = \left(6\operatorname{cis}\left(\frac{\pi}{7}\right)\right)^n$. Solve for the values of n such that z is a real number.

 $n=7k, k\in Z$

Question 26

ازازار

Solve for the value(s) of n such that z is a real number.

$$z = 4\operatorname{cis}\left(\frac{3(\pi+2)}{8}n\right)$$

solve
$$\left(\frac{3 \cdot (\pi + 2)}{8} \cdot n = \pi \cdot k, n\right)$$

$$n = \frac{8 \cdot k \cdot \pi}{3 \cdot (\pi + 2)}$$

 $k \in \mathbb{Z}$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

