

Website: contoureducation.com.au | Phone: 1800 888 300

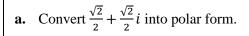
Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Complex Numbers I [8.1]

Homework

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2-Pg 23
Supplementary Questions	Pg 24-Pg 38



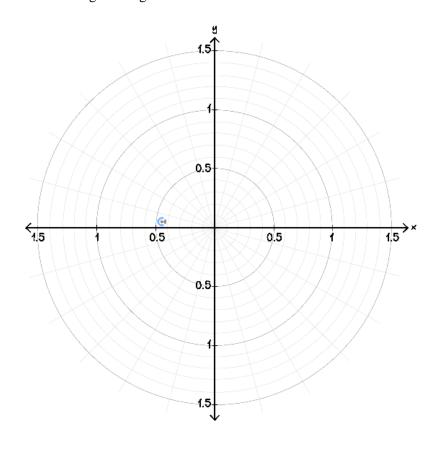
Section A: Compulsory Questions

Sub-Section [8.1.1]: Find Polar and Rectangular Forms of Complex Numbers

Question	1
Question	J

c.	Convert $-\sqrt{3} + i$ into polar form.
٠	

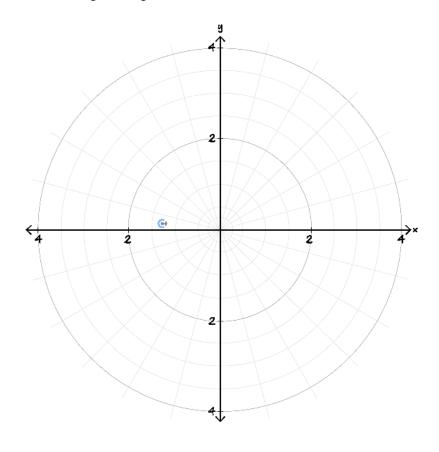
Space for Personal Notes	


Question 2

a.

i. Convert $\operatorname{cis}\left(\frac{7\pi}{3}\right)$ into a rectangular form.

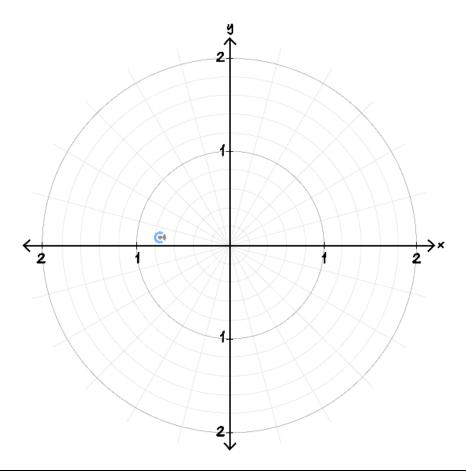
ii. Plot your answer on the Argand diagram below:



b.

i. Convert $-2\sqrt{3} + 2i$ into polar form.

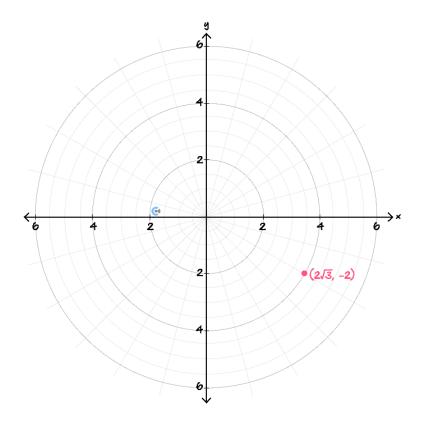
ii. Plot your answer on the Argand diagram below:



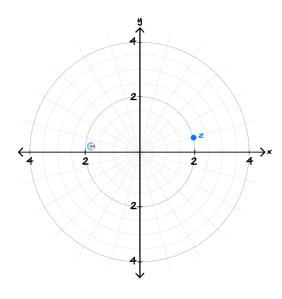
c.

i. Convert $-\frac{\sqrt{6}}{2} - \frac{\sqrt{6}}{2}i$ into polar form.

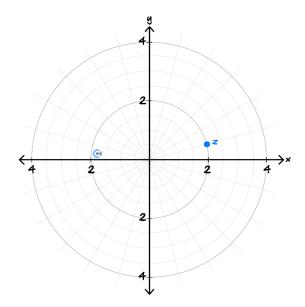
ii. Plot your answer on the Argand diagram below:

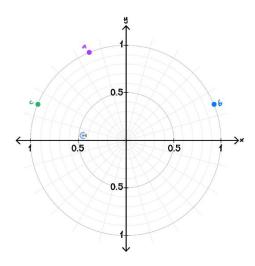


Question 3



a. Below is a complex number plotted on an Argand diagram. State the number in polar form.

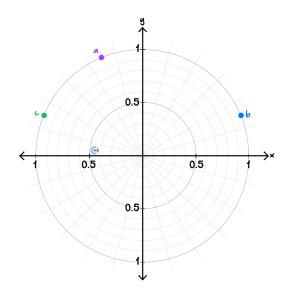

b. The complex number z is on the Argand diagram below:


i. State z in polar form.

- <u></u>	 	

ii. Plot z^2 on the Argand diagram below:

c. 3 complex numbers, a, b and c are plotted on the Argand diagram below:



i. State which complex number corresponds to $cis\left(\frac{23\pi}{8}\right)$.

ii. Plot b^2 on the Argand diagram below:

Qu	Question 4 Tech-Active.				
a.	Convert $\operatorname{cis}\left(\frac{15\pi}{8}\right)$ into a rectangular form.				
	·				
	, (G, (G, (G_+, (G, (G_+, (G_+				
b.	Convert $\frac{\sqrt{6}-\sqrt{2}}{2} + \frac{\sqrt{6}+\sqrt{2}}{2}i$ into polar form.				

<u>Sub-Section [8.1.2]</u>: Evaluate Operations of Complex Numbers

Qu	Question 5			
a.	Let $u = 5\operatorname{cis}\left(\frac{3\pi}{8}\right)$ and $v = 2\operatorname{cis}\left(\frac{2\pi}{8}\right)$. Evaluate uv , leaving your answer in polar form.			
b.	Let $u = 3\operatorname{cis}\left(\frac{5\pi}{6}\right)$ and $v = 2\operatorname{cis}\left(\frac{5\pi}{12}\right)$. Evaluate $\frac{u}{v}$, leaving your answer in polar form.			

c.	Let $u = 4 + \frac{7}{2}i$ and $v = \frac{3}{5} + i$. Evaluate $u + v$.

Question 6

a. Let u=1+3i and $v=\sqrt{3}+\sqrt{3}i$. Evaluate uv, leaving your answer in rectangular form.

b. Simplify $\frac{1+2i}{1-i}$.

c. Let $u = \operatorname{cis}\left(\frac{3\pi}{4}\right)$ and $v = 2\operatorname{cis}\left(\frac{2\pi}{3}\right)$. Evaluate u + v, leaving your answer in rectangular form.

Question 7

a. Let $u = \frac{\sqrt{\sqrt{2}+2}}{2} + \frac{\sqrt{2-\sqrt{2}}}{2}i$. Evaluate u^2 , leaving your answer in polar form.

b. Simplify $\frac{-1+\sqrt{3}i}{2-\sqrt{3}i}$.

c. Let $u = \sqrt{2}\operatorname{cis}\left(\frac{\pi}{4}\right)$ and $v = 1 + (1 - 2\sqrt{3})i$. Evaluate $u + \bar{v}$, leaving your answer in polar form.

Question 8 Tech-Active.

a. Evaluate $\operatorname{cis}\left(\frac{5\pi}{7}\right) + \operatorname{cis}\left(\frac{2\pi}{7}\right)$, leaving your answer in rectangular form to 2 decimal places.

b. Let $u = 5\sqrt{3} - \sqrt{2}i$ and $v = \sqrt{7} - i$. Simplify $\frac{u}{v}$.

Sub-Section [8.1.3]: Apply De Moivre's Theorem

Question 9			
a.	Let $a = \sqrt{2}\operatorname{cis}\left(\frac{\pi}{6}\right)$. Evaluate a^4 , leaving your answer in rectangular form.		
b.	Let $v = \sqrt{3}\operatorname{cis}\left(\frac{5\pi}{7}\right)$. Evaluate v^3 , leaving your answer in polar form with the principal argument.		

C.	Evaluate $(1+i)^5$, leaving your answer in rectangular form.	
	Evaluate (1 + t) , leaving your answer in rectangular form.	
	6 B 1N .	
Sp	ace for Personal Notes	
Ī		

Question 10

a. Let $u = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$. Evaluate u^3 , leaving your answer in rectangular form.

b. Let $v = 2^{\frac{1}{11}} \operatorname{cis}\left(\frac{\pi}{6}\right)$. Evaluate v^{22} , leaving your answer in rectangular form.

c. Evaluate $\frac{\left(1+\sqrt{3}i\right)^3}{\left(-\sqrt{2}+\sqrt{2}i\right)^4}$, leaving your answer in rectangular form.

Question 11

a. Find the value(s) of n such that $\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^n = \operatorname{cis}\left(\frac{\pi}{3}\right)$.

b. Suppose $u = \operatorname{cis}\left(\frac{2\pi}{7}\right)$. Find the value(s) of n such that u^n is a real number.

c. Find the value(s) of n such that $(3+3i)^n = ai$, where $a \in R$ and a < 0.

Question 12 Tech-Active.	
Evaluate $\left(\sqrt{2}\operatorname{cis}\left(\frac{\pi}{12}\right)\right)^5$, leaving your answer in rectangular form.	

Space for Personal Notes		

Sub-Section: Final Boss

Question 13		
Consider the equation $z^6 - 1 = 0$, $z \in C$.		
a. Use De Moivre's theorem to verify that $z = \operatorname{cis}\left(\frac{\pi}{3}\right)$ is a solution to this equation.		
b. Find the other five solutions to the equation.		

c.	Show that $cis(a) + cis(-a) = 2 cos(a)$.
d.	Hence, show that the sum of the roots of $z^6 - 1$ is 0.

Qı	Question 14		
De	De Moivre's theorem states that $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.		
a.	Show that De Moivre's theorem is true for $n = 2$.		
b.	Using induction, prove De Moivre's theorem for $n \in \mathbb{N}$.		
۲	pace for Personal Notes		
 	Jace IVI I Elsvilai NULES		

Section B: Supplementary Questions

Sub-Section [8.1.1]: Find Polar and Rectangular Forms of Complex Numbers

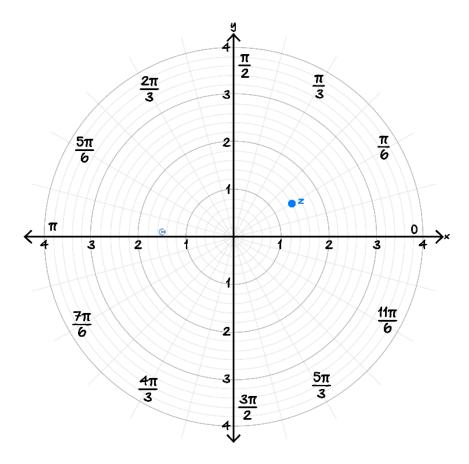
Qu	uestion 15
a.	Write $14i$ in polar form.
b.	Convert $-2 - 2\sqrt{3}i$ into polar form.

c.	Convert $\sqrt{2}\operatorname{cis}\left(\frac{-\pi}{4}\right)$ into a rectangular form.

Question 16

a. Convert $-\frac{3\sqrt{3}}{2} + \frac{3}{2}i$ into polar form.

b. Convert $\operatorname{cis}\left(\frac{420\pi}{4}\right)$ into Cartesian form.


c. Convert $-\frac{5\sqrt{2}}{2} - \frac{5\sqrt{2}}{2}i$ into polar form.

Question 17

The complex number $z = \sqrt{2}\operatorname{cis}\left(\frac{\pi}{6}\right)$ is shown in the Argand diagram below:

On the same set of axes, plot:

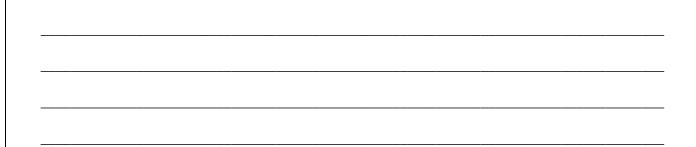
- **a.** z^2
- **b.** z^4
- c. \bar{z}
- **d.** $z\bar{z}$

Question 18

a. Use a compound formula to show that $\sin\left(\frac{7\pi}{12}\right) = \frac{\sqrt{6}+\sqrt{2}}{4}$.

b. Hence, show that $\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2}-\sqrt{6}}{4}$, using the fact that $\sqrt{\frac{2-\sqrt{3}}{4}} = \frac{\sqrt{6}-\sqrt{2}}{4}$.

c. Hence, state $\operatorname{cis}\left(\frac{17\pi}{12}\right)$.


<u>Sub-Section [8.1.2]</u>: Evaluate Operations of Complex Numbers

Question 19

a. Let $u = 3\operatorname{cis}\left(\frac{\pi}{5}\right)$ and $v = 2\operatorname{cis}\left(\frac{-4\pi}{5}\right)$. Evaluate uv, leaving your answer in polar form.

b. Let $u = \operatorname{cis}\left(\frac{-3\pi}{4}\right)$ and $v = \operatorname{cis}\left(\frac{\pi}{4}\right)$. Evaluate $\frac{u}{v}$.

c.	Let $u = \sqrt{3} + 2i$ and $v = \sqrt{48} - i$. Evaluate $u + v$.

Space for Personal Notes

Question	20
Question	_

a. Find $\frac{1-i}{2+3i}$.

b. Let $a = (3 - \sqrt{2}i)$ and $b = (2 + \sqrt{5}i)$. Evaluate ab, leaving your answer in rectangular form.

c. Evaluate $2\operatorname{cis}\left(\frac{3\pi}{4}\right) + \operatorname{cis}\left(\frac{\pi}{3}\right)$, leaving your answer in an appropriate form.

uestion 21	
Show that $z\bar{z} = z ^2$ for any complex number z.	
Evaluate $\frac{3+10i}{2-5i}$.	
It is known that $z = 1 - 2i$. Find z^4 in rectangular form.	
It is known that $z = 1 - 2t$. Find $z = 1$ rectangular form.	

Question	22
----------	----

u	RESTIVIT 22	
	Show that for any complex number $z = a + bi$ where $a, b \in \mathbb{R}$, $\text{Im}(z^3) = b(3a^2 - b^2)$.	
	Hence, prove or disprove the statement $z^3 \in \mathbb{R}$ if and only if $z \in \mathbb{R}$.	
	Hence, prove or disprove the statement $z^3 \in \mathbb{R}$ if and only if $z \in \mathbb{R}$.	_
	Hence, prove or disprove the statement $z^3 \in \mathbb{R}$ if and only if $z \in \mathbb{R}$.	
	Hence, prove or disprove the statement $z^3 \in \mathbb{R}$ if and only if $z \in \mathbb{R}$.	
	Hence, prove or disprove the statement $z^3 \in \mathbb{R}$ if and only if $z \in \mathbb{R}$.	

Sub-Section [8.1.3]: Apply De Moivre's Theorem

Qu	Question 23				
Eva	aluate the following, leaving your answer in an appropriate form.				
a.	$\left(3\operatorname{cis}\left(\frac{\pi}{6}\right)\right)^3$				
b.	$(-2+2i)^3$				

 $\mathbf{c.} \quad \left(2\operatorname{cis}\left(\frac{-\pi}{10}\right)\right)^2$

Question 24

a. Evaluate $(1 + \sqrt{3}i)^{48}$, leaving your answer in the form a^b where a and b are integers.

b.		
j	i .	Convert $2\sqrt{2} - 2\sqrt{2}i$ to polar form.
i	ii.	Hence, evaluate $\frac{(2\sqrt{2}-2\sqrt{2}i)^7}{(-1+\sqrt{3}i)^{12}}$. State your answer in the form $a+bi$, where $a,b\in\mathbb{R}$.
c.]	Eva	aluate $\left(\frac{\sqrt{2}+\sqrt{2}i}{\sqrt{3}+1}\right)^5$, leaving your answer in polar form.
-		
-		·
-		
-		
-		

\mathbf{O}	uestion	25
~	acoulon	

a.	Find the value of n such that $(\sqrt{2} + \sqrt{2}i)^n = 1024 \operatorname{cis}(\theta)$ where $\theta \in (-\pi, \pi]$, and state θ .

b. Solve for the value(s) of n such that z is purely imaginary.

$$z = 9\operatorname{cis}\left(\frac{\pi}{10}n\right)$$

_		
_	 	

c.	Let $z = \left(6\operatorname{cis}\left(\frac{\pi}{7}\right)\right)^n$. Solve for the values of n such that z is a real number.

Question 26

Solve for the value(s) of n such that z is a real number.

$$z = 4\operatorname{cis}\left(\frac{3(\pi+2)}{8}n\right)$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

