

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Vectors I [6.1] Test Solutions

20.5 Marks. 1 Minute Reading. 16 Minutes Writing.

Results:

Test Questions/ 20.5	Test Questions	30

Section A: Test Questions (20.5 Marks)

Question 1 (3.5 marks)

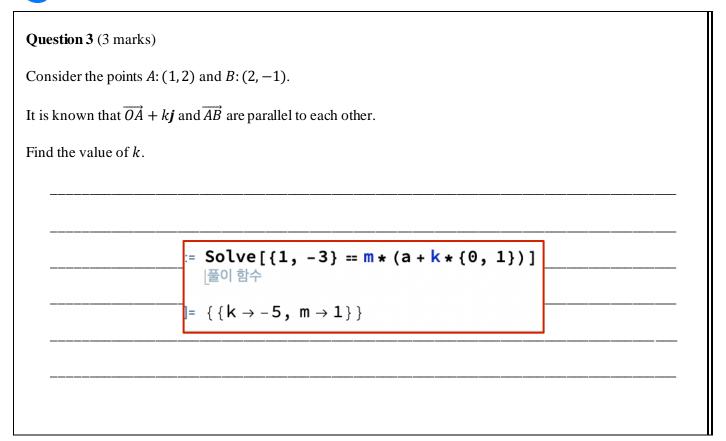
Tick whether the following statements are **true** or **false**.

Statement		True	False	
a. Scalar quantity has a direction component whereas a vector quantity does not.			✓	
b.	If $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, $\overrightarrow{CA} = u$ and $\overrightarrow{CB} = v$, then $b - a = v - u$.	✓		
c.	The resultant vector is a sum of any number of vectors added together.	✓		
d. Subtraction of a vector can be thought of adding a negative vector.				
e.	Scalar multiplication does not change the direction of the vector. False: It can go the o	ther direction.	✓	
f.	If the point <i>A</i> has coordinates $(1, 4)$ and the point <i>B</i> has coordinates $(3, 5)$ then the position vector of <i>A</i> is $2i + j$.	1	✓	
g.	The angle between two vectors is measured by joining one's head with another vector's tail.		✓	
	False: It's either both heads or both tails.	1		

CONTOUREDUCATION

Question 2 (4 marks)

The point A has coordinates (2,1,-3) and point B is such that $\overline{AB} = 3i - j + 5k$.


a. Find the position vector of B. (2 marks)

 $\Rightarrow \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$	
$\Rightarrow \underline{b} = (2_1 1_1 - 3) + (3_1 - 1_1 5)$	
→ p = (5,0,2)	

b. Hence, find the distance of B from O. (2 marks)

$\Rightarrow \overrightarrow{OB} = S_1O_12 $	
 ⇒ b = √29 a 5.39	

Question 4 (4 marks)

The following information is given for two points which lie on the same plane.

$$\overline{OA} = \mathbf{i} + 4\mathbf{j}$$
 and $\overline{OB} = 5\mathbf{i} + 5\mathbf{j}$

a. Find the vector \overline{AB} and hence, state its length. (2 marks)

 $|\overrightarrow{AB}| = |4\underline{i} + \underline{j}| = \sqrt{4^2 + 1^2} = \sqrt{17}$

b. Find $\cos(\theta)$, where θ is the angle AOB. (2 marks)

 $\cos(\theta) = \frac{5}{\sqrt{34}}$

Question 5 (6 marks)

Given the vectors:

$$a = i - j + 3k$$

$$\boldsymbol{b} = 2\boldsymbol{i} - \boldsymbol{j} + \boldsymbol{k}$$

a. Evaluate $\boldsymbol{a} - \boldsymbol{b}$. (1 mark)

-i + 2k

b. Calculate the dot product of **a** and **b**. (1 mark)

6

c. Find a unit vector in the direction of $-\mathbf{a}$. (1 mark)

 $-\frac{1}{\sqrt{11}}(\boldsymbol{i}-\boldsymbol{j}+3\boldsymbol{k})$

d. Find $\sin(\theta)$, where θ is the angle between \boldsymbol{a} and the z-axis. (3 marks)

 $\cos(\theta) = \frac{3}{\sqrt{11}}$

 $\sin(\theta) = \frac{\sqrt{2}}{\sqrt{11}} \text{ via identity } (\sin^2 + \cos^2 = 1)$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

