

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Vectors I [6.1]

Homework

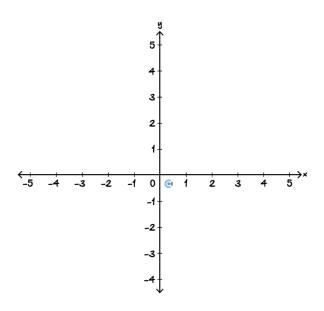
Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 02-Pg 18
Supplementary Questions	Pg 19-Pg 30

Section A: Compulsory Questions

Sub-Section [6.1.1]: Basics of Vectors

Question 1


The vector $\mathbf{u} = \begin{bmatrix} a \\ b \end{bmatrix}$ is defined by the directed line segment from (-2,6) to (4,-2). Find a and b.

Question 2

A = (1,3), B = (4,1) and O is the origin. Sketch the following vectors:

- **a.** \overrightarrow{OA}
- **b.** \overrightarrow{OB}
- c. \overrightarrow{AB}

Question 3

If $\mathbf{a} = \mathbf{i} - 5\mathbf{j}$ and $\mathbf{b} = -3\mathbf{i} + 6\mathbf{j}$ find in terms of \mathbf{i} and \mathbf{j} :

a. a+b

b. 2a - 3b

Question 4

In the triangle \overrightarrow{OAB} , $\overrightarrow{OA} = 4\mathbf{i} + 2\mathbf{j}$ and $\overrightarrow{OB} = \mathbf{i} + 3\mathbf{j}$. If M is the midpoint of AB, find \overrightarrow{OM} in terms of \mathbf{i} and \mathbf{j} .

<u>Sub-Section [6.1.2]</u>: Magnitude and Unit Vectors

Question	5

- **a.** Find the length of vector $\mathbf{v} = 3\mathbf{i} 2\mathbf{j}$.
- **b.** Find the unit vector parallel to \boldsymbol{v} .

Question 6

Let $\mathbf{a} = -\mathbf{i} + 2\mathbf{j}$ and $\mathbf{b} = 3\mathbf{i} + 5\mathbf{j}$. Vector \mathbf{c} is parallel to $2\mathbf{a} + \mathbf{b}$, and has a magnitude of 10.

Find c in terms of i and j.

Question 7					
A(2,3), $B(4,5)$ and $C(7,2)$ are the vertices of a triangle ABC.					
a. Find	a. Find				
i. $ \overrightarrow{AB} $					
	_				
ii. $ \overrightarrow{BC} $					
	_				
	_				
iii. \overrightarrow{AC}					
	_				
b. Identify the type of triangle.					
	_				
	_				
Space for Personal Notes					
Space for Personal Notes					

Sub-Section [6.1.3]: Dot Product

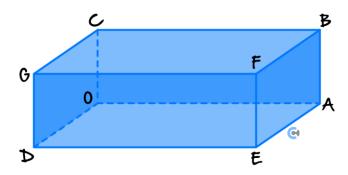
Question 8

If $\mathbf{u} = -3\mathbf{i} + \mathbf{j}$ and $= 3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, find $\mathbf{u} \cdot \mathbf{v}$.

Question 9

If |u| = 5 and |v| = 6, and the angle between u and v is 60° , find $u \cdot v$.

Question 10 Tech-Active.
Find the angle of the vector $\mathbf{a} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ makes with the positive direction of the z-axis in degrees, correct to two decimal places.
Question 11
A position vector in two dimensions has a magnitude of 4 and a direction of 120° measured anticlockwise from the x -axis. Find the vector.
Space for Personal Notes


Sub-Section: Problem Solving

Que	stion 12
If \overline{O}	$\vec{A} = 5i + 2j + 7k$ and $\vec{OB} = 9i + 6j + 7k$. Find \vec{AB} and hence, show that \vec{AB} is parallel to the $x-y$ plane.
_	
-	
-	
-	

Question 13

Suppose OABCDEFG is a cuboid and that $\overrightarrow{OA} = 5\mathbf{j}$, $\overrightarrow{OC} = 2\mathbf{k}$, and $\overrightarrow{OD} = 3\mathbf{i}$.

- **a.** Express, in terms of i, j and k:
 - i. \overrightarrow{OE}

ii. \overrightarrow{OF}

iii. \overrightarrow{GA}

b. Let *M* be the midpoint of face *FEAB*. Find \overrightarrow{OM} in terms of *i*, *j* and *k*.

Question 14	4	14	estion	Ou
--------------------	---	----	--------	----

Let $\mathbf{u} = 4\mathbf{i} - 3\mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} - \mathbf{j}$.

- **a.** Find the length of vector $oldsymbol{u}$.
- **b.** Find unit vector parallel to \boldsymbol{u} .
- **c.** Find a vector of length 10 parallel to \boldsymbol{u} .
- **d.** Find the angle between \boldsymbol{u} and \boldsymbol{v} .
- e. Write \boldsymbol{u} as the sum of two vectors, one parallel to \boldsymbol{v} and the other perpendicular to \boldsymbol{v} .

Let $t \in \mathbb{R}$ and suppose $\overrightarrow{OA} = t\mathbf{i} + \mathbf{j}$ perpendicular to \overrightarrow{OB} .	$-t\mathbf{j} + 8\mathbf{k}$ and $\overrightarrow{OB} = t\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$. Find the values of t for which \overrightarrow{OA} is	
Question 16	W 1	
A, B, C, and D are the vertices of a	a parallelogram. and $C = (10, 1)$, find the coordinates of D in vector form.	
A, B, C, and D are the vertices of a))
A, B, C, and D are the vertices of a	and $C = (10, 1)$, find the coordinates of D in vector form.	<i></i>
A, B, C, and D are the vertices of a	and $C = (10, 1)$, find the coordinates of D in vector form.	
A, B, C, and D are the vertices of a	and $C = (10, 1)$, find the coordinates of D in vector form.	

Question	17
Question	

The points *A* and *B* have position vectors $\begin{bmatrix} -1\\1 \end{bmatrix}$ and $\begin{bmatrix} \frac{3}{2}\\\frac{3}{2} \end{bmatrix}$ respectively.

- a.
- i. Find the vector \overrightarrow{AB} .
- ii. Find |AB|.

The point D has a position vector $\begin{bmatrix} d \\ 0 \end{bmatrix}$.

b. Find the vectors \overrightarrow{AD} and \overrightarrow{DB} in terms of d.

c. If angle $\angle ADB$ is 90°, find the two possible values of \boldsymbol{d} .

d.	For the smaller value of d find the area of the triangle ADB .	
e.	For the larger value of d show that the triangle is isosceles.	
		
 Sc	ace for Personal Notes	
H		

Sub-Section: The Tech-Free "Final Boss" [VCAA Level]

Question 18

Points A, B, and C have position vectors:

$$a = i + 2j, b = 5i + 2j, c = 3i + 6j$$

Let point D lie on line segment AC, and suppose its position vector is $\mathbf{d} = (1 - k)\mathbf{a} + k\mathbf{c}$, where $0 \le k \le 1$.

a.

i.	Find the vectors \overrightarrow{AD} and \overrightarrow{DB} in terms of k .

ii. Hence, write an expression of $\overrightarrow{AD} \bullet \overrightarrow{DB}$.

b.	If angle $\angle ADB = 90^{\circ}$, use your expression from part a. to find the exact value(s) of k that satisfies this condition.
	For the value(s) of k found in part b. , compute the lengths of \overrightarrow{AD} and \overrightarrow{DB} , and hence find the area of triangers.
•	ADB.
•	Let $m = b - a$ and $n = c - a$.
	Use the dot product to find the angle between vectors \mathbf{m} and \mathbf{n} , in degrees.

e.	Suppose point E lies on the line AB, with position vector $\mathbf{e} = \mathbf{a} + t(\mathbf{b} - \mathbf{a})$.
	If the angle between e and c is 60°, find the value of t .

Spa	ace for Personal Notes

<u>Sub-Section</u>: The Tech-Active "Final Boss" [VCAA Level]

Qu	estion 19
A r	runner sets off on a bearing of 120° (assume east is in the direction of i and north is in the direction of j).
a.	Find a unit vector for the direction the runner goes.
b.	If the runner runs in this direction for $3 km$, find the position of the runner with respect to their starting point.
c.	If the runner now turns and runs $6 km$ south, find the position of the runner with respect to the original starting
-	point.
d.	Find the distance of the runner from the starting point.

e.	Find the bearing of the runner from their starting point, correct to 2 decimal places.
f.	Another runner sets off from the same starting point and runs directly east for $4 km$.
	Find the angle between the two runners' final displacement vectors . Round your answer to 2 decimal places .
Sp	ace for Personal Notes

Section B: Supplementary Questions

Sub-Section: Exam 1 (Tech-Free)

Question 20	
P is the point $(-1,3)$, Q is the point $(12,4)$ and R is the midpoint of PQ.	
a. Calculate the lengths of OP and OQ .	
b. Find \overrightarrow{PQ} and hence determine the length PQ .	
c. Show that ΔPOQ is a right-angled triangle.	

d.	Find \overrightarrow{OR} and hence show <i>R</i> is equidistant from the three vertices of ΔPOQ .
Qu	estion 21
Poi	nts A , B , C , and D are defined by position vectors \boldsymbol{a} , \boldsymbol{b} , \boldsymbol{c} , and \boldsymbol{d} respectively. If $\overrightarrow{AB} + \overrightarrow{CD} = 0$:
a.	Express d in terms of a , b , and c .
b.	Show that AC and BD bisect each other.
c.	Prove that $ABCD$ is a rhombus if $ a = c $ and angles AOB and BOC are equal.

Question	22
Oucouon.	

A pyramid *ABCDV* has a square base *ABCD*, with vertices *A*, *B*, and *D* having position vectors: $\mathbf{i} - \mathbf{j} + \mathbf{k}$, $11\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $\mathbf{i} + 5\mathbf{j} + 9\mathbf{k}$.

a. Verify that sides AB and AD are equal in length and are perpendicular to each other.

b. Determine the coordinates of *C*, the fourth vertex of the square base.

c. Find the coordinates of P, the point where the diagonals of the square ABCD intersect.

d. If *V* is defined by xi + yj + 2k, and if \overrightarrow{VP} is perpendicular to the two diagonals \overrightarrow{AC} and \overrightarrow{BD} of the base, find x and y.

e.	Let <i>M</i> be the midpoint of side <i>AB</i> . Calculate the angle <i>VMP</i> (in degrees).	
e		
f.	Find the exact volume of the pyramid.	
Sp	pace for Personal Notes	

Sub-Section: Exam 2 (Tech-Active)

Question 23

If vector $\overrightarrow{AB} = \mathbf{u}$ and vector $\overrightarrow{BC} = \mathbf{v}$ then vector \overrightarrow{AC} is equal to:

- A. u + v
- B. v-u
- C. u-v
- **D.** $u \times v$

Question 24

ABCD is a parallelogram. If $\overrightarrow{AB} = a$ and $\overrightarrow{BC} = b$, then in terms of a and b, \overrightarrow{CA} equals:

- A. a+b
- B. a-b
- C. -b-a
- D. $b \cdot a$

Question 25

If $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$, then the unit vector parallel to \mathbf{a} is:

- **A.** 3i + 4j
- **B.** $\frac{1}{5}(3i + 4j)$
- C. $\frac{1}{\sqrt{5}}(3i + 4j)$
- **D.** $\frac{1}{\sqrt{3}}(3i + 4j)$

Question 26

If $\mathbf{a} = 3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ then $\hat{\mathbf{a}}$ is:

- **A.** $\frac{1}{6}(3i 2j + 2k)$
- **B.** $\frac{1}{\sqrt{17}}(3i-2j+2k)$
- C. $\frac{1}{7}(3i-2j+2k)$
- **D.** $\frac{1}{\sqrt{13}}(3i-2j+2k)$

Question 27

If vector $\mathbf{a} = 3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ is parallel to vector $\mathbf{b} = a\mathbf{i} + b\mathbf{j} - 4\mathbf{k}$, then:

- **A.** a = 3 and b = 5
- **B.** a = 5 and b = 10
- **C.** a = 6 and b = 10
- **D.** a = 1 and b = 2
- **E.** a = 9 and b = 15

Question 28

A and B are points on a plane such that $\overrightarrow{OA} = 4\mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{OB} = 2\mathbf{i} - 5\mathbf{j}$. If M is the midpoint of the line segment B, then \overrightarrow{MO} equals:

- **A.** $\frac{3}{2}i 4j$
- **B.** -3i + j
- C. $-\frac{3}{2}i + 4j$
- **D.** 3i j

Question 29

Given $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$ and $\mathbf{a} \cdot \mathbf{b} = 5$, the value of $|\mathbf{a} - \mathbf{b}|$ is:

- **A.** $\sqrt{7}$
- **B.** $\sqrt{15}$
- **C.** 1
- **D.** 15

Question 30

If vector b = 4i - j + 3k, the angle **b** makes with the z-axis is closest to:

- **A.** 38°
- **B.** 52°
- C. 101°
- **D.** 54°

Question 31

A two-dimensional unit vector that is perpendicular to 3i + 4j, is:

- **A.** 3i 4j
- **B.** $\frac{4}{5}i + \frac{3}{5}j$
- C. $\frac{4}{5}i \frac{3}{5}j$
- **D.** $\frac{3}{5}i + \frac{4}{5}j$

Question 32

If $(2x\mathbf{i} + 5\mathbf{j} + \mathbf{k}) \cdot (-3\mathbf{i} + 2x\mathbf{j} - 4\mathbf{k}) = 8$, then x is equal to:

- **A.** $\frac{4}{3}$
- **B.** 2
- **C.** 3
- **D.** -2

Question 33

Two drones depart from the same base.

Drone M moves in the direction 4i + 3j and Drone N moves in the direction -6i + 8j, where i and j are unit vectors in the East and North directions, respectively (with 1 unit representing 1 kilometre).

- **a.** Find the unit vector representing the direction of:
 - **i.** Drone M.
 - **ii.** Drone *N*.

b.	Using the vector method, find the distance between the two drones if Drone M travels for 12 km and Drone N
	travels for 16 km.
c.	Find the angle between the directions of the two drones.
d.	On a different mission, Drone M flies in the direction $5i - \sqrt{7}j$.
	Drone N must fly at 90° to Drone M's direction.
	Find two possible unit vectors for Drone N 's direction in terms of \boldsymbol{i} and \boldsymbol{j} .

(uestion	34
v	ucsuon	JŦ

Two ships leave from the same port.

Ship *X* sails in the direction of $5\mathbf{i} + 12\mathbf{j}$, and Ship *Y* sails in the direction of $7\mathbf{i} - 24\mathbf{j}$, where \mathbf{i} and \mathbf{j} are unit vectors pointing East and North, respectively (with 1 unit representing 1 kilometre).

a.	Fin	d the unit vector representing the direction of:
	i.	Ship X.
	ii.	Ship Y.
b.		ng a vector method, find the distance between the two ships if Ship X travels for 15 km and Ship Y travel $10 \ km$. Round your answer to one decimal place.
c.		e a vector method to find the angle between the directions of the two ships. Round your answer to one imal place.

On dire	ection of Ship X. Find two possible unit vectors for Ship Y's direction in terms of <i>i</i> and <i>j</i> .
vo cy	
vo cy 5 i — (lomet	clists leave from the same place, O . Cyclist A heads in a direction of $3i + 4j$ and Cyclist B in a direction $6j$ where i and j are unit vectors in the East and North directions, respectively with 1 unit representing 1 are. d the unit vector representing the direction of:
wo cy 5 i — (lomet	clists leave from the same place, O . Cyclist A heads in a direction of $3i + 4j$ and Cyclist B in a direction $6j$ where i and j are unit vectors in the East and North directions, respectively with 1 unit representing 1 are.
vo cy 5 i – (lomet	clists leave from the same place, O . Cyclist A heads in a direction of $3i + 4j$ and Cyclist B in a direction $6j$ where i and j are unit vectors in the East and North directions, respectively with 1 unit representing 1 are. d the unit vector representing the direction of:
wo cy 5 i — (lomet Fin- i.	clists leave from the same place, O . Cyclist A heads in a direction of $3i + 4j$ and Cyclist B in a direction $6j$ where i and j are unit vectors in the East and North directions, respectively with 1 unit representing 1 are. d the unit vector representing the direction of:
wo cy 5 i — (lomet Fin- i.	clists leave from the same place, <i>O</i> . Cyclist <i>A</i> heads in a direction of 3 <i>i</i> + 4 <i>j</i> and Cyclist <i>B</i> in a direction 6 <i>j</i> where <i>i</i> and <i>j</i> are unit vectors in the East and North directions, respectively with 1 unit representing 1 are. d the unit vector representing the direction of: Cyclist <i>A</i> .
wo cy 5 i – 6 lomet Find i.	clists leave from the same place, <i>O</i> . Cyclist <i>A</i> heads in a direction of $3i + 4j$ and Cyclist <i>B</i> in a direction $6j$ where i and j are unit vectors in the East and North directions, respectively with 1 unit representing 1 are. d the unit vector representing the direction of: Cyclist <i>A</i> .
wo cy 5 i – 6 lomet Find i.	clists leave from the same place, <i>O</i> . Cyclist <i>A</i> heads in a direction of $3i + 4j$ and Cyclist <i>B</i> in a direction $6j$ where i and j are unit vectors in the East and North directions, respectively with 1 unit representing 1 are. d the unit vector representing the direction of: Cyclist <i>A</i> .
wo cy 5 i – (lomet Fin i.	clists leave from the same place, <i>O</i> . Cyclist <i>A</i> heads in a direction of $3i + 4j$ and Cyclist <i>B</i> in a direction $6j$ where i and j are unit vectors in the East and North directions, respectively with 1 unit representing 1 are. d the unit vector representing the direction of: Cyclist <i>A</i> .

b.	Find the midpoint between the two cyclists after they finish their journey where each cyclist ends up after travelling for $2.5 \ km$ (Cyclist A) and $26 \ km$ (Cyclist B) respectively. Express the coordinates.	
c.	Use a vector method to find the angle between the direction of travel of the two cyclists. Round to one decimplace.	nal
d.	Another time, the cyclists again leave from the same place, 0 . Cyclist A heads in the direction $3\mathbf{i} + \sqrt{3}\mathbf{j}$.	
	Cyclist B sets off at 120° to Cyclist A . Give two possible unit vectors in terms of i and j for the direction of Cyclist B .	
Sp	pace for Personal Notes	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

