

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

# VCE Specialist Mathematics ½ Graph Theory II [5.4]

**Test Solutions** 

21 Marks. 1 Minute Reading. 17 Minutes Writing.

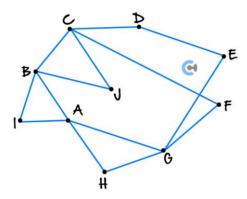
#### Results:

| Test Questions | /21 |  |
|----------------|-----|--|



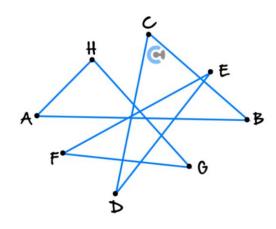


#### Section A: Test Questions (21 Marks)


|    |                                          | True                                                                          | False    |          |
|----|------------------------------------------|-------------------------------------------------------------------------------|----------|----------|
| a. | To find the number of possible           | <b>✓</b>                                                                      |          |          |
| b. | Euler trail is a walk where we pa        | ass all the vertices exactly once.                                            |          | <b>✓</b> |
| c. | <u> </u>                                 | ex has an odd degree contains an Euler trail.                                 |          | <b>✓</b> |
|    | It must be exactly two vertice           | s OR all the vertices have an even degree.                                    |          |          |
| d. | For Euler circuits, we can go thi        | <b>✓</b>                                                                      |          |          |
| e. | A graph where all vertices have circuit. | <b>✓</b>                                                                      |          |          |
| f. | Hamiltonian path is a walk when          | <b>✓</b>                                                                      |          |          |
| g. | Hamiltonian cycle does not have          | <b>✓</b>                                                                      |          |          |
| h. | Trees must have a path that can          | <b>✓</b>                                                                      |          |          |
| i. | •                                        | aning they cannot go through all the edges and                                |          |          |
|    | come back to the original edge.          | They cannot go through all the vertices and come back to the original vertex. |          |          |
| j. | Spanning tree cannot be a subgr          |                                                                               | <b>/</b> |          |

### **CONTOUREDUCATION**

Question 2 (4 marks)


Identify an Eulerian trail and a Hamiltonian cycle in each of the following graphs (if they exist).

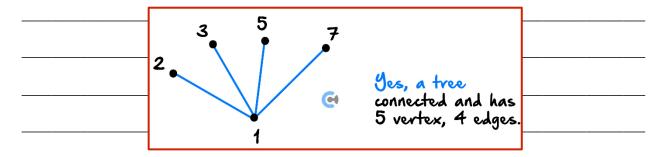
**a.** (2 marks)



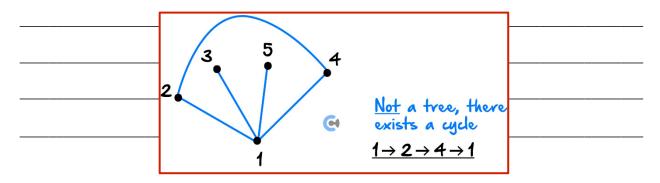
Eulerian trail: AIBAHGFCJBCDEGA; Hamiltonian cycle: none exist

**b.** (2 marks)




Eulerian trail: ABCDEFGHA (others exist); Hamiltonian cycle: HABCDEFGH (others exist)

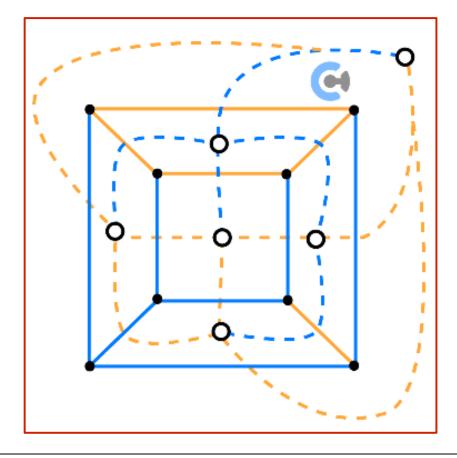



Question 3 (4 marks)

Which of the following graphs are trees? In each case, we insist that  $m \neq n$ .

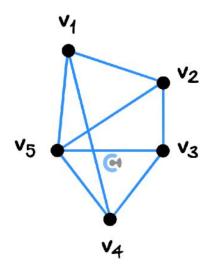
**a.** Vertex set  $\{1, 2, 3, 5, 7\}$  and an edge between m and n if m divides m or n divides m. (2 marks)




**b.** Vertex set  $\{1, 2, 3, 4, 5\}$  and an edge between m and n if m divides n or n divides m. (2 marks)



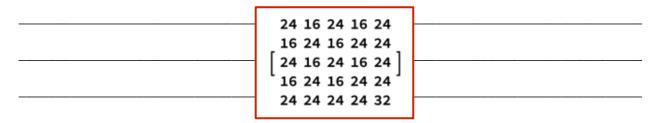



**Question 4** (2 marks)

Find spanning trees of the following graph.



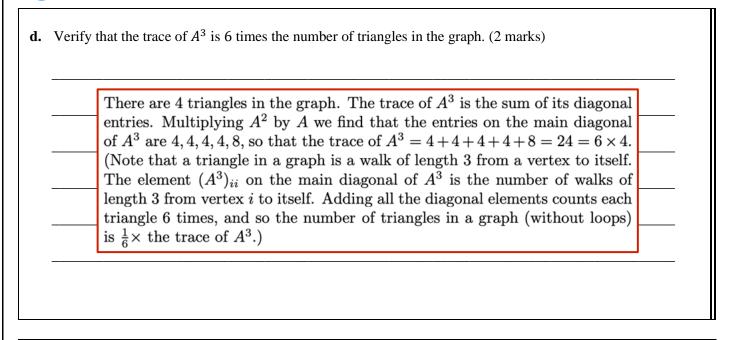



Question 5 (6 marks) Tech-Active.



**a.** Write down the adjacency matrix, A, for this graph. (2 marks)

|  | $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ | 0<br>1<br>0 | 1<br>0<br>1 | 0<br>1<br>0 | 1  |  |
|--|--------------------------------------------------|-------------|-------------|-------------|----|--|
|  | $\setminus_1$                                    |             | 1           |             | 0/ |  |


**b.** Evaluate  $A^4$ . (1 mark)



**c.** Find the number of different walks of length 4 from  $v_5$  to  $v_5$ . (1 mark)

The number of different walks of length 4 from  $v_5$  to  $v_5$  is the (5,5) entry in  $A^4$ . The (5,5) entry in  $A^4$  is equal to the dot product of row 5 of  $A^2$  and column 5 of  $A^2$ . That is,  $(2\ 2\ 2\ 2\ 4) \cdot (2\ 2\ 2\ 4) = 32$ .







Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

#### VCE Specialist Mathematics ½

## Free 1-on-1 Consults

#### What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

## 6

#### **Booking Link**

bit.ly/contour-specialist-consult-2025

