
Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½
Graph Theory II [5.4]
Test

21 Marks. 1 Minute Reading. 17 Minutes Writing.

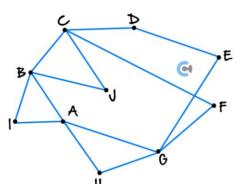
Results:

Section A: Test Questions (21 Marks)

Question 1 (5 marks)

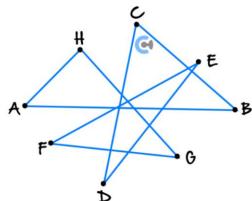
Tick whether the following statements are **true** or **false**.

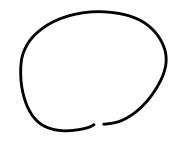
	Statement	True	False
a.	To find the number of possible walks with a length of 3, we consider A^3 .		
b.	Euler trail is a walk where we pass all the vertices exactly one.		
c.	A graph where exactly one vertex has an odd degree contains an Euler trail.		
d.	For Euler circuits, we can go through the vertices multiple times.		
e.	A graph where all vertices have an even degree always contains an Euler circuit.		
f.	Hamiltonian path is a walk where we pass all the vertices exactly once.		
g.	Hamiltonian cycle does not have to use all the edges.		
h.	Trees must have a path that can visit all the vertices.		
i.	Trees must not have a cycle, meaning they cannot go through all the edges and come back to the original edge.		
j.	Spanning tree cannot be a subgraph of a graph that is not a tree.		


Space for Personal Notes

Question 2 (4 marks)

Identify an Eulerian trail and a Hamiltonian cycle in each of the following graphs (if they exist).


a. (2 marks)

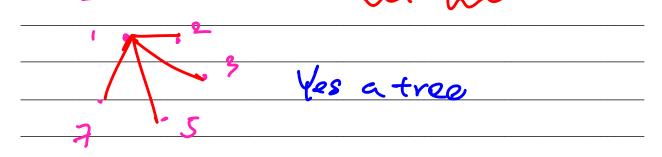


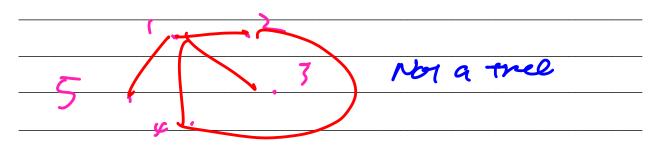
Euler: EDCBIAHGFCJBAGE

Hamitonian: Doesit exist

b. (2 marks)

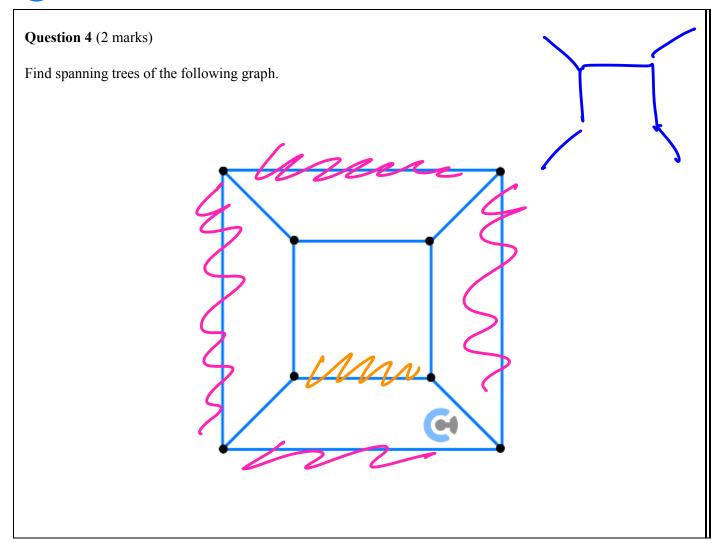
EULEY Trail ABCDZFGMA


Hamteurian cycle


Question 3 (4 marks)

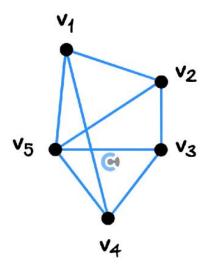
Which of the following graphs are trees? In each case, we insist that $m \neq n$.

a. Vertex set $\{1, 2, 3, 5, 7\}$ and an edge between m and n if m divides m or n divides m. (2 marks)



b. Vertex set $\{1, 2, 3, 4, 5\}$ and an edge between m and n if m divides m or n divides m. (2 marks)

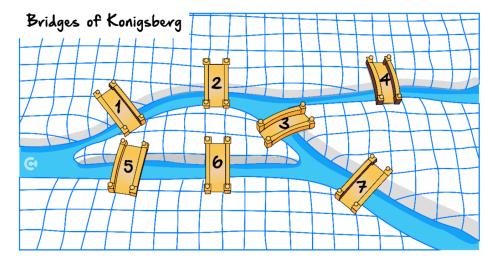
Space for Personal Notes



Space for Personal Notes

Question 5 (6 marks) Tech-Active.

a. Write down the adjacency matrix, A, for this graph. (2 marks)


b. Evaluate A^4 . (1 mark)

c. Find the number of different walks of length 4 from v_5 to v_5 . (1 mark)

d.	Verify that the trace of A^3 is 6 times the number of triangles in the graph. (2 marks)
Sp	ace for Personal Notes

In the town of Koningsberg, there are seven bridges. People of the town were questioning if it is possible to walk through all the bridges in such a way that each bridge would only be crossed once.

a. Draw the graph that represents the different sections of the town connected by the bridges. (3 marks)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

