

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½
Graph Theory II [5.4]
Test

21 Marks. 1 Minute Reading. 17 Minutes Writing.

Results:

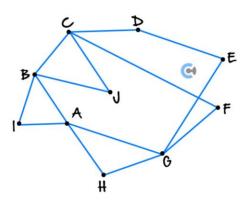
Test Questions	/21	

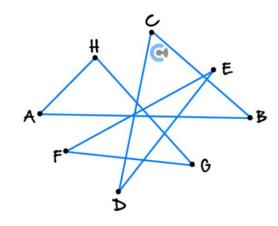
Section A: Test Questions (21 Marks)

Question 1 (5 marks)

Tick whether the following statements are **true** or **false**.

	Statement	True	False
a.	To find the number of possible walks with a length of 3, we consider A^3 .		
b.	Euler trail is a walk where we pass all the vertices exactly once.		
c.	A graph where exactly one vertex has an odd degree contains an Euler trail.		
d.	For Euler circuits, we can go through the vertices multiple times.		
e.	A graph where all vertices have an even degree always contains an Euler circuit.		
f.	Hamiltonian path is a walk where we pass all the vertices exactly once.		
g.	Hamiltonian cycle does not have to use all the edges.		
h.	Trees must have a path that can visit all the vertices.		
i.	Trees must not have a cycle, meaning they cannot go through all the edges and come back to the original edge.		
j.	Spanning tree cannot be a subgraph of a graph that is not a tree.		

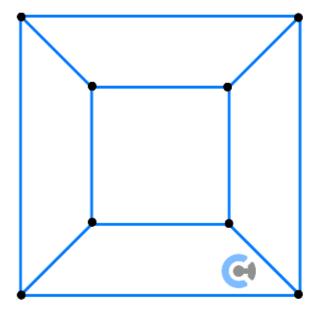

Space for Personal Notes


Question 2 (4 marks)

Identify an Eulerian trail and a Hamiltonian cycle in each of the following graphs (if they exist).

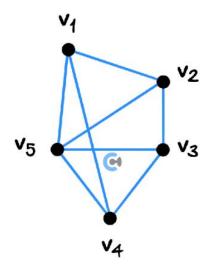
a. (2 marks)

b. (2 marks)



i	ch of the following graphs are trees? In each case, we insist that $m \neq n$.
	Vertex set $\{1, 2, 3, 5, 7\}$ and an edge between m and n if m divides n or n divides m . (2 marks)
•	Vertex set $\{1, 2, 3, 4, 5\}$ and an edge between m and n if m divides n or n divides m . (2 marks)
(ce for Personal Notes

Question 4 (2 marks)


Find spanning trees of the following graph.

Space for Personal Notes

Question 5 (6 marks) Tech-Active.

a. Write down the adjacency matrix, A, for this graph. (2 marks)

b. Evaluate A^4 . (1 mark)

c. Find the number of different walks of length 4 from v_5 to v_5 . (1 mark)

	·				
d.	Verify that the trace of A^3 is 6 times the number of triangles in the graph. (2 marks)				
Space for Personal Notes					

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

