CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Graph Theory I [5.3]

Workbook

Outline:

Pg 17-26

Graphs

- Vertices and Edges
- Degree of a Vertex

Adjacency List and Matrix

- Adjacency List
- Adjacency Matrix

Types of Graphs

- Simple Graph
- Regular Graphs
- Complete Graph
- Connected Graphs

Pg 10-16

Pg 2-9

Isomorphism and Subgraphs

- Isomorphism
- Subgraphs

Pg 27-31

Learning Objectives:

- SM12 [5.3.1] Graph Theory Fundamentals Vertices, Edges, Degree, Adjacency Lists, and Matrices
- A

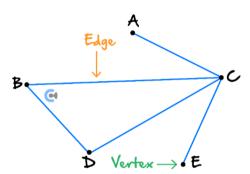
- SM12 [5.3.2] Types of Graphs
- SM12 [5.3.3] Isomorphisms and Subgraphs

Section A: Graphs

Sub-Section: Vertices and Edges

What does the graph have?

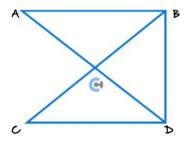
Vertices and Edges



A graph consists of a set of points called <u>vertices</u> and a set of unordered pairs of vertices, called <u>edges</u>.

Question 1 Walkthrough.

Consider a graph below.



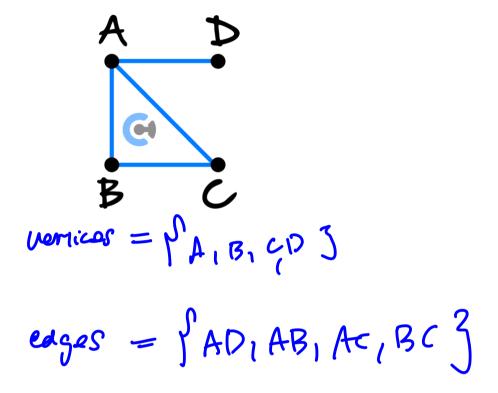
Write down the vertex set and edge set of the given graph.

vertex =
$$\int_{A_B,C_D}^{A_{B_1},C_D}$$

edges = $\int_{A_{B_1},A_{D_1}}^{A_{B_1},C_D}$ BD, BC, CDY

Write the vertex sets and edge sets for the graphs corresponding to the following pictures.

a.



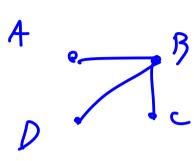
b.

CONTOUREDUCATION

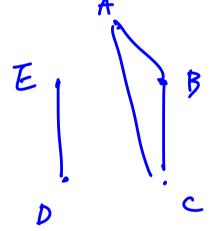
Question 3

Draw pictures of 2 graphs with the following vertex and edge sets.

a. Vertex set: {*A*, *B*, *C*, *D*} Edge set: {*AB*, *BC*, *BD*}

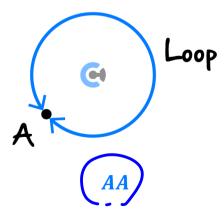


b. Vertex set: {*A*, *B*, *C*, *D*, *E*} Edge set: {*AB*, *BC*, *CA*, *DE*}



What if an edge connects A to A?

Loops

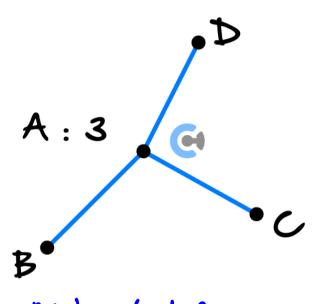


▶ Loop is an edge which connects to the same vertex.

Sub-Section: Degree of a Vertex

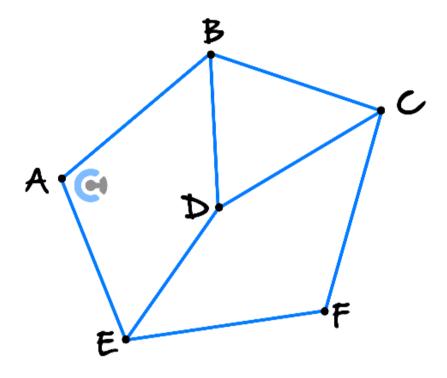
Let's consider the degree of a vertex!

Degree of a Vertex



Question 4 Walkthrough.

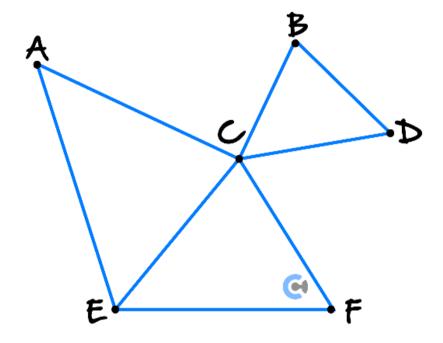
Fill in the following information for the graph below.



Vertex	Degree of Vertex
A	2
В	3
C	3
	3
L	3
F	2
Number of Edges:	Sum of Degrees:

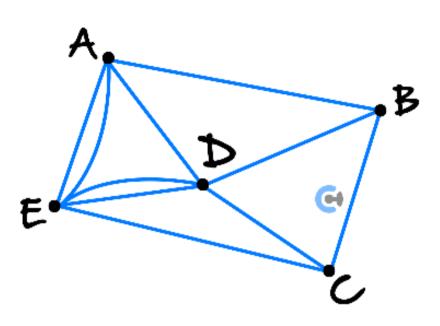
Fill in the following information for the graphs below.

a.



Vertex	Degree of Vertex
A	2
3	ع
_	5
D	2
5	3
F	2
Number of Edges:	Sum of Degrees:

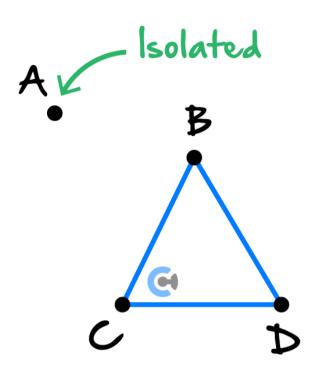
b.



Vertex	Degree of Vertex
A	4
3	3
C	3
D	5
F	5
Number of Edges:	Sum of Degrees:

What about if a vertex is not connected to any other point (including itself)?

Isolated Vertex



- lsolated vertex has no edges connected to it.
- Its degree is equal to **3**

Section B: Adjacency List and Matrix

Sub-Section: Adjacency List

<u>Discussion:</u> What do we call two points that are connected by an edge?

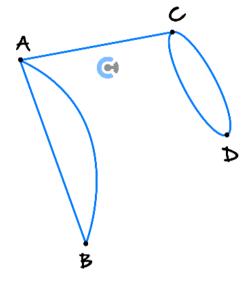
adjacent

Adjacency Lists

Adjacency List
$ A \to (B, D, D, E) $
ightharpoonup B o (A, E)
$ C \to (C,D) $
$ D \to (A,A,C) $
ightharpoonup E ightharpoonup (A,B)

- Adjacency list contains all the vertices a given vertex is connected to.
- If the point is connected multiple times, we write the vertex multiple times
- If a point is _____ with itself, we write the vertex to be adjacent to itself.

Create an adjacency list that describes the following graph.



$$A \rightarrow (B_1B_1C)^{Graph}$$

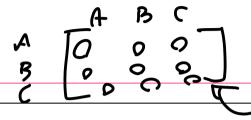
$$B \rightarrow (A_1A)$$

$$C \rightarrow (A_1D_1D)$$

$$C \rightarrow (A_1 O_1 D_2)$$

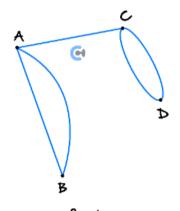
Sub-Section: Adjacency Matrix

Discussion: Is there a way to convert the adjacency list into a matrix form?



Question 7 Walkthrough.

Consider the previous question with its graph and adjacency list.



Graph

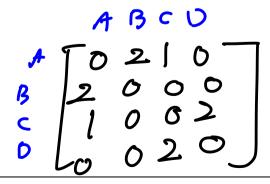
$$A \rightarrow (B, B, C)$$

$$B \rightarrow (A, A)$$

$$C \rightarrow (A, D, D)$$

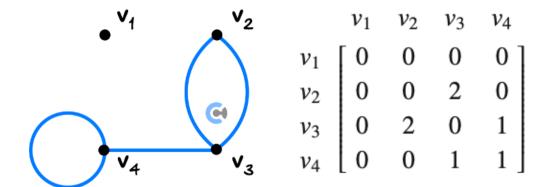
$$D \rightarrow (C, C)$$

Convert the given adjacency list into an adjacency matrix.



CONTOUREDUCATION

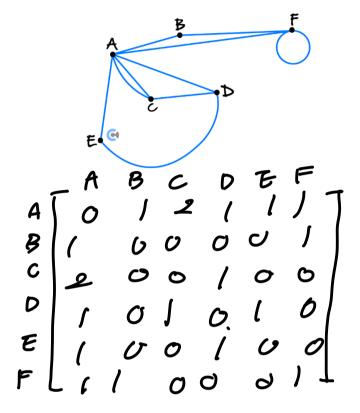
Adjacency Matrix



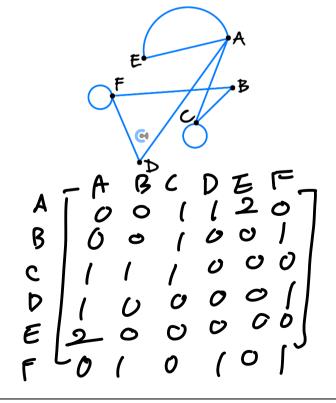
A matrix that represents the vertices and edges that connect the vertices of a graph.

Construct the adjacency matrix for the given graphs.

a.



b.



<u>Discussion:</u> Could the adjacency matrix be a non-square matrix? (Same number of rows and columns)

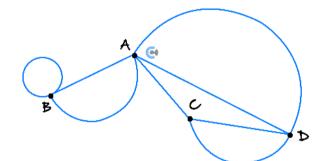
<u>Discussion:</u> What does it mean when there is non-zero value in the diagonal element of the adjacent matrix?

there is a coop

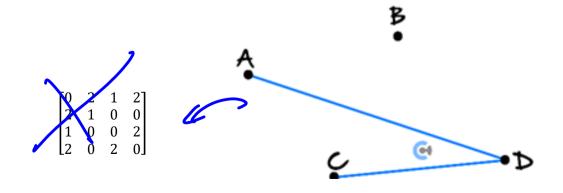
Properties of Adjacency Matrices

- Always a square matrix.
- Any non-zoo value in the leading diagon will indicate the existence of a loop

$$\begin{bmatrix} 0 & 2 & 1 & 2 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 2 & 0 & 2 & 0 \end{bmatrix}$$

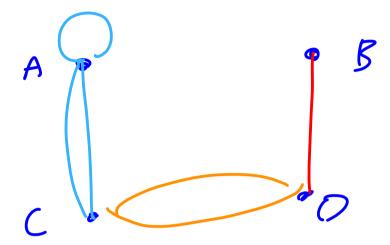


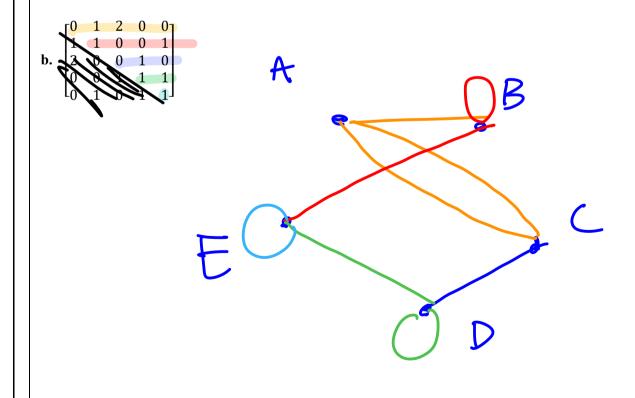
A row consisting of all zeros indicates an Islanded Vertex

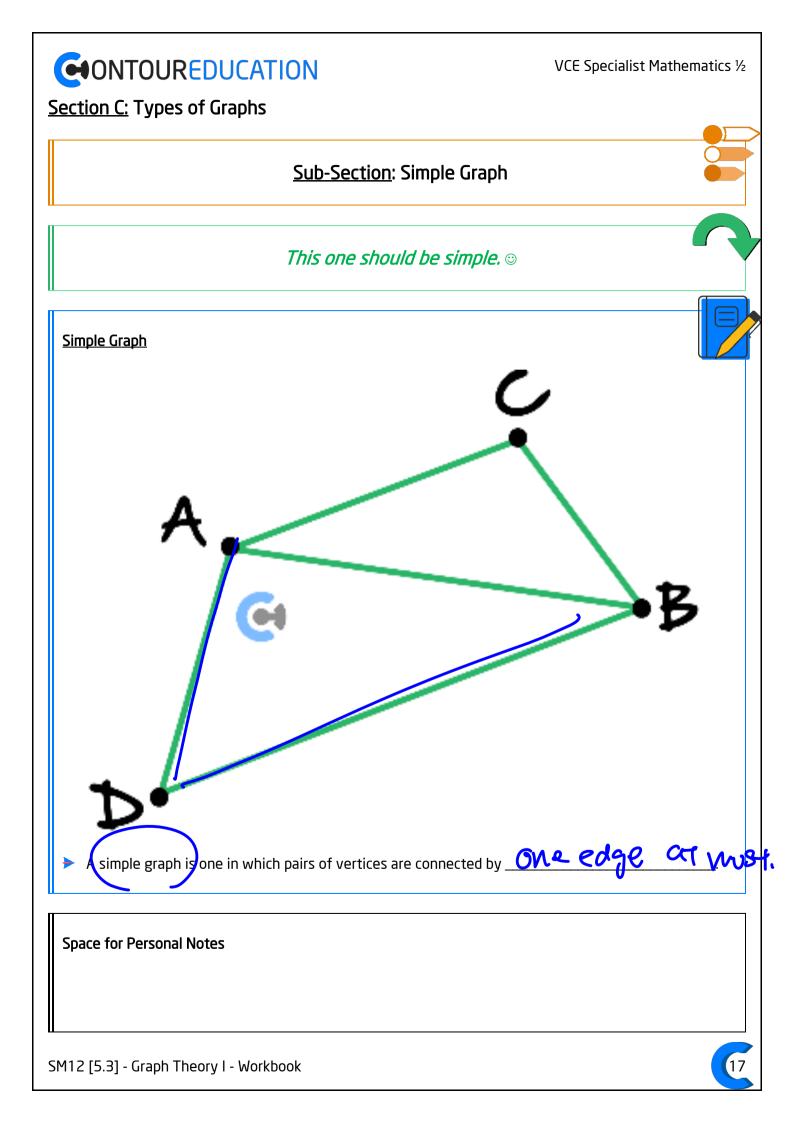


Draw graphs to represent the following adjacency matrices.

a.

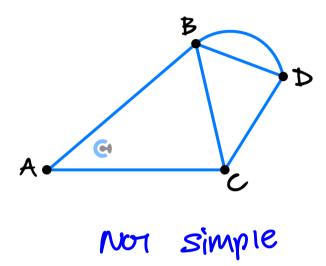




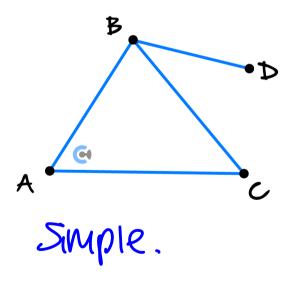


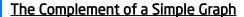
State whether the following graphs are simple graphs or not.

a.



b.



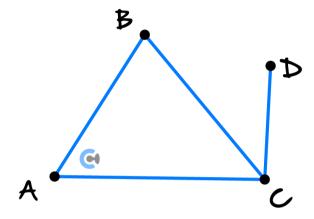


Simple Graph	The Complement
B G D	B. C.

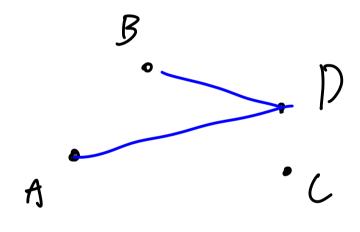
Complement of $G = \overline{G}$

- The complement of a simple graph contains the set of vertices.
- But it contains 6000510 set of edges. (Edges the original graph does not have)

Consider a simple graph below.



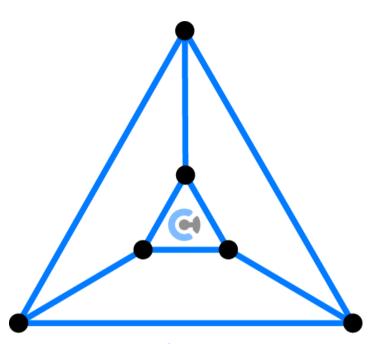
Sketch the complement of the simple graph above.



Sub-Section: Regular Graphs

What do we call the graph when all its vertices have the same degree?

Regular Graphs

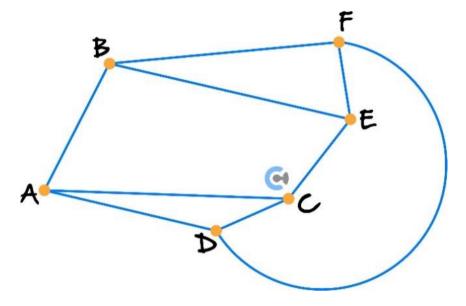


- Regular graph has all its vertices with the **Same degree**
- If each vertex has a degree r then the graph is "regular of degree r" or "r

ONTOUREDUCATION

Question 12

Consider the following graph.



a. State the type of graph this is.

3-regular

b. State the number of edges of the graph.

c. State the total of all the degrees of all points.

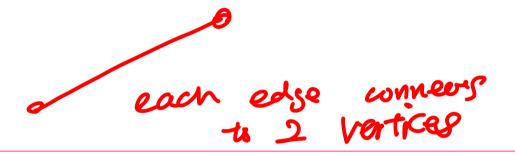
o you notice?

d. Hence, what do you notice?

Number of Edges and Degree of all Vertices of a Regular Graph

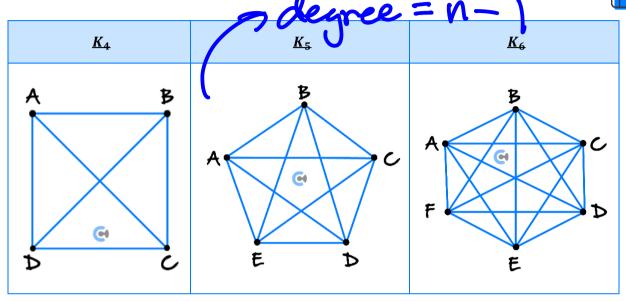
Number of Edges \times 2 = Total Degree of all Vertices

<u>Discussion:</u> How does that make sense? Think about how many "degrees" each edge generates.



Sub-Section: Complete Graph

Complete Graph (K_n)



- A complete graph is a simple graph in which each vertex is connected to
- A complete graph is denoted by K_n , where n is the number of vertices in the graph.
- Complete graph is a type of regular graph.

Discussion: Can a complete graph also be a type of regular graph?

Yes

Discussion: What would the simple graph and its complement add up / overlap to?

914= K

CONTOUREDUCATION

Exploration: Number of edges in a complete graph

- Consider n many people handshaking each other.
- It is known that one person needs to handshake everyone else.
- How many handshakes will it take?

Recalling the arithmetic sum formula: $S_n = \frac{n}{2}(a+l)$, find the total number of handshakes.

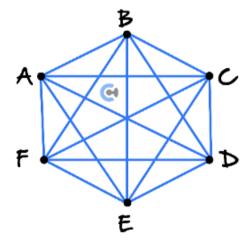
Number of Handshakes =
$$\frac{n-1}{2}(1+(n-1)) = \frac{n(n-1)}{2}$$

- \blacktriangleright Similarly Consider K_n : Complete graph with n many vertices.
- How many edges (or handshakes) would the graph have in total?

Number of Edges for Complete Graph =
$$\frac{N \cdot (n-1)}{n}$$

Definition

Number of Edges for Complete Graph



- \blacktriangleright For K_n :
 - Number of Edges for Complete Graph = $\frac{n(n-1)}{2}$

Sub-Section: Connected Graphs

Connected Graphs

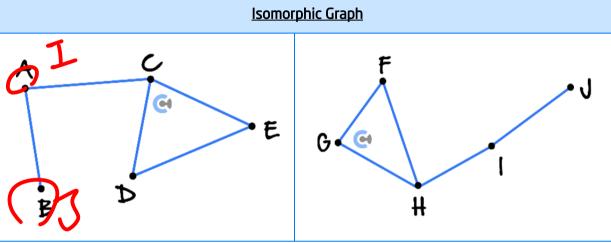
Connected Graph	<u>Disconnected Graph</u>
A CO F	A D E F

- A <u>Connected</u> graph is a graph where it is possible to reach all vertices by moving along edges.
- A graph which is not connected is called a **disconnected**.

Section D: Isomorphism and Subgraphs

Sub-Section: Isomorphism

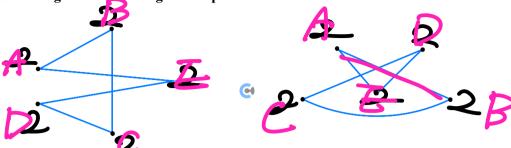
Isomorphism



- Two graphs are **isomorphic** if their vertices and edges differ only by the way in which they are
- Checklist for determining isomorphism:
 - Are the number of vertices the same in each graph?
 - Are the number of edges the same in each graph?
 - Check that the degrees of each vertex match for both graphs.

• Label each vertex on both graphs and check if there is a correspondence between the vertices.

Question 13 Walkthrough - Determining Isomorphism.

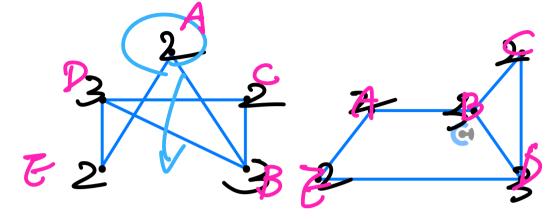


Checklist for determining isomorphism:

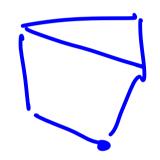
- 1. Are the number of vertices the same in each graph?
- 2. Are the number of edges the same in each graph?
- 3. Check that the degrees of each vertex match for both graphs.
- **4.** Label each vertex on both graphs and check if there is a correspondence between the vertices.

For each of the following pairs of graphs, determine whether the graphs are isomorphic.

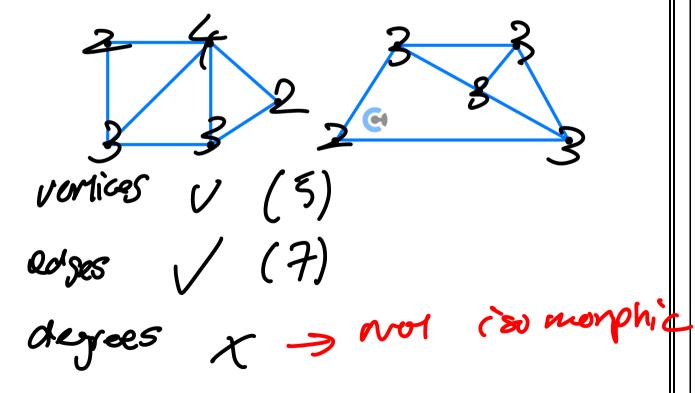
a.



Juanicos 6 ed ses



b.



Sub-Section: Subgraphs

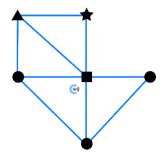
Subgraphs

<u>Original Graph</u>	<u>Subgraph</u>
A D B	B C E

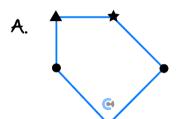
- A **Subgraphs** is a graph whose vertices and edges are all **contains** within the original graph.
- A subgraph can be created by ______edges and vertices from the original graph.

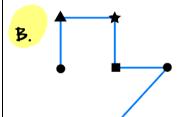
NOTE: There are multiple possible subgraphs.

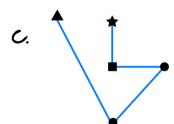
Consider this network graph.

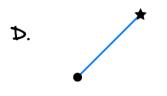


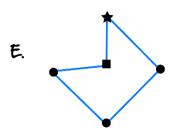
A subgraph of this graph is:











Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

