ONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Graph Theory I [5.3]

Workbook

Outline:

Pg 17-26

Graphs

- Vertices and Edges
- Degree of a Vertex

Adjacency List and Matrix

- Adjacency List
- Adjacency Matrix

Types of Graphs Pg 2-9

- Simple Graph
- Regular Graphs
- Complete Graph
- Connected Graphs

Pg 10-16

Isomorphism and Subgraphs

- Isomorphism
- Subgraphs

Pg 27-31

Learning Objectives:

- SM12 [5.3.1] Graph Theory Fundamentals Vertices, Edges, Degree, Adjacency Lists, and Matrices

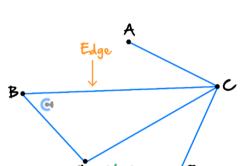
- SM12 [5.3.2] Types of Graphs
- SM12 [5.3.3] Isomorphisms and Subgraphs

Section A: Graphs

Sub-Section: Vertices and Edges

What does the graph have?

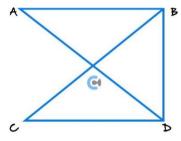
Vertices and Edges



A graph consists of a set of points called ______ and a set of unordered pairs of vertices, called _____.

Question 1 Walkthrough.

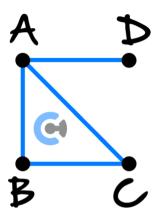
Consider a graph below.



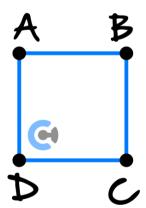
Write down the vertex set and edge set of the given graph.

Write the vertex sets and edge sets for the graphs corresponding to the following pictures.

a.



b.



CONTOUREDUCATION

Question 3

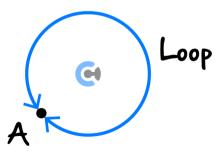
Draw pictures of 2 graphs with the following vertex and edge sets.

a. Vertex set: {*A*, *B*, *C*, *D*} Edge set: {*AB*, *BC*, *BD*}

b. Vertex set: {*A*, *B*, *C*, *D*, *E*} Edge set: {*AB*, *BC*, *CA*, *DE*}

What if an edge connects A to A?

Loops



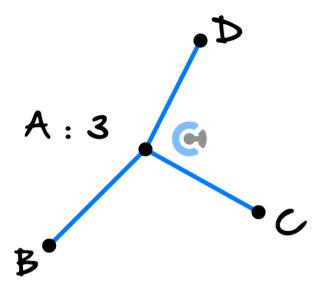
AA

▶ Loop is an edge which connects to the same vertex.

Sub-Section: Degree of a Vertex

Let's consider the degree of a vertex!

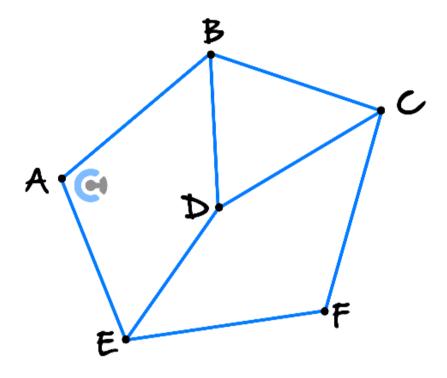
Degree of a Vertex



Degree of a vertex is the ______ connected to the vertex.

Question 4 Walkthrough.

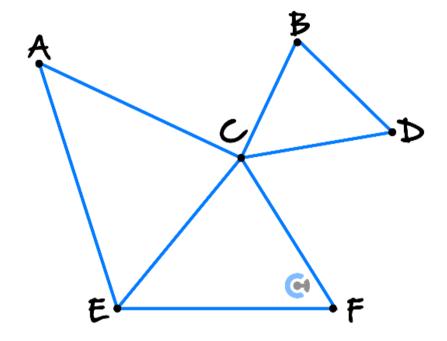
Fill in the following information for the graph below.



Vertex	Degree of Vertex
Number of Edges:	Sum of Degrees:

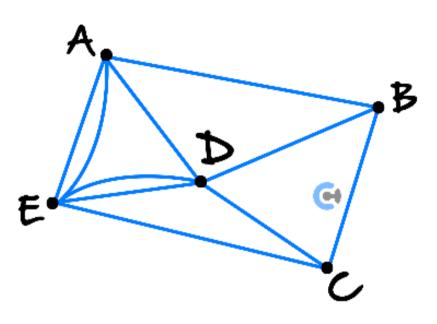
Fill in the following information for the graphs below.

a.



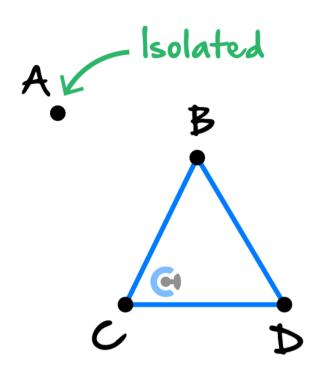
Vertex	Degree of Vertex
Number of Edges:	Sum of Degrees:

b.



Vertex	Degree of Vertex
Number of Edges:	Sum of Degrees:

Isolated Vertex



- lsolated vertex has no edges connected to it.
- Its degree is equal to ______.

Section B: Adjacency List and Matrix

Sub-Section: Adjacency List

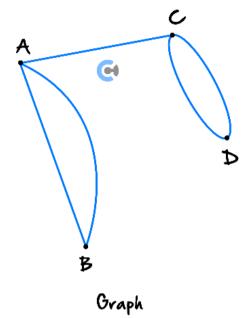
<u>Discussion:</u> What do we call two points that are connected by an edge?

Adjacency Lists

<u>Graph</u>	Adjacency List
A B	$ A \to (B, D, D, E) $
() ()	$ B \to (A, E) $
	$ C \to (C, D) $
	$ D \to (A,A,C) $
D C	ightharpoonup E ightharpoonup (A, B)
D C	$\blacktriangleright E \to (A,B)$

- Adjacency list contains all the vertices a given vertex is connected to.
- If the point is connected multiple times, we write the vertex______.
- If a point is _____ with itself, we write the vertex to be adjacent to itself.

Create an adjacency list that describes the following graph.

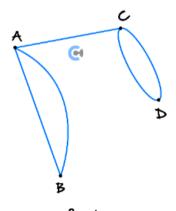


Sub-Section: Adjacency Matrix

<u>Discussion:</u> Is there a way to convert the adjacency list into a matrix form?

Question 7 Walkthrough.

Consider the previous question with its graph and adjacency list.



Graph

$$A \rightarrow (B, B, C)$$

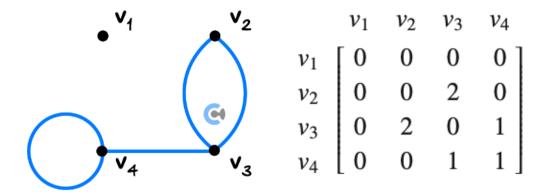
$$B \rightarrow (A, A)$$

$$C \rightarrow (A, D, D)$$

$$D \rightarrow (C, C)$$

Convert the given adjacency list into an adjacency matrix.

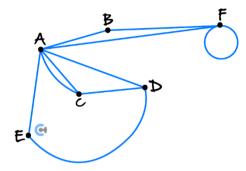
Adjacency Matrix



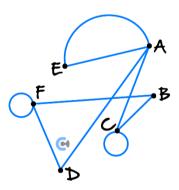
A matrix that represents the vertices and edges that connect the vertices of a graph.

Construct the adjacency matrix for the given graphs.

a.



b.



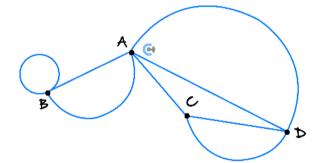
<u>Discussion:</u> Could the adjacency matrix be a non-square matrix? (Same number of rows and columns)

<u>Discussion:</u> What does it mean when there is a non-zero value in the diagonal element of the adjacent matrix?

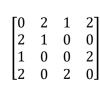
Properties of Adjacency Matrices

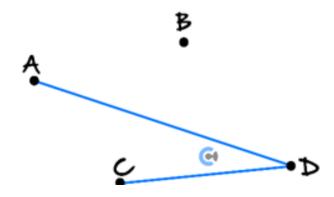
- Always a square matrix.
- Any ______ value in the ______ will indicate the existence of a ______.

$$\begin{bmatrix} 0 & 2 & 1 & 2 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 2 & 0 & 2 & 0 \end{bmatrix}$$



A row consisting of all zeros indicates an ______

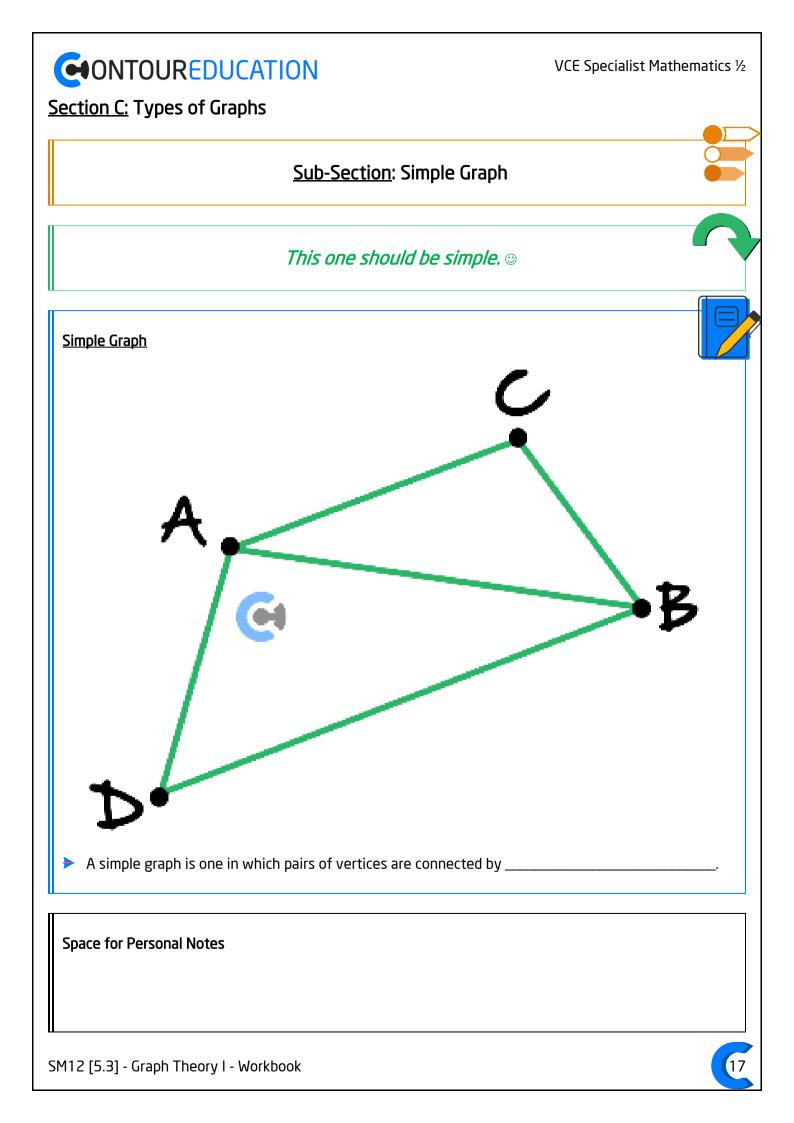




Draw graphs to represent the following adjacency matrices.

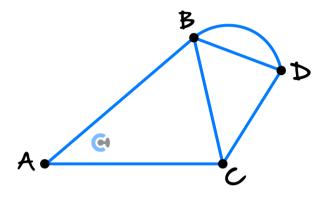
a.
$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 \end{bmatrix}$$

b.
$$\begin{bmatrix} 0 & 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

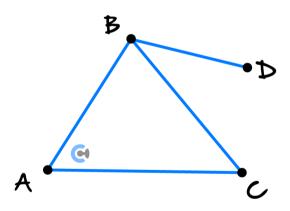


State whether the following graphs are simple graphs or not.

a.



b.



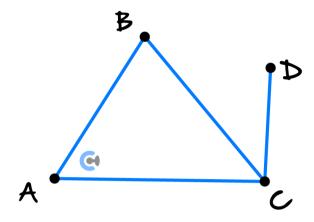
The Complement of a Simple Graph

Simple Graph	The Complement
B G D	B. C.

Complement of $G = \overline{G}$

- ➤ The complement of a simple graph contains the _____ set of vertices.
- ▶ But it contains _____ set of edges. (Edges the original graph does not have)

Consider a simple graph below.

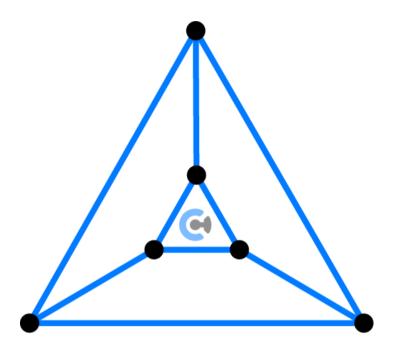


Sketch the complement of the simple graph above.

Sub-Section: Regular Graphs

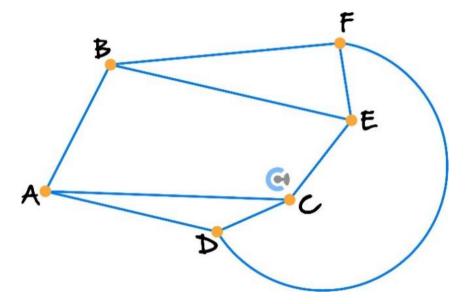
What do we call the graph when all its vertices have the same degree?

Regular Graphs



- Regular graph has all its vertices with the ______.
- \blacktriangleright If each vertex has a degree r then the graph is "regular of degree r" or "_______".

Consider the following graph.

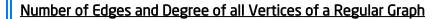


a. State the type of graph this is.

b. State the number of edges of the graph.

c. State the total of all the degrees of all points.

d. Hence, what do you notice?



Number of Edges \times 2 = Total Degree of all Vertices

<u>Discussion:</u> How does that make sense? Think about how many "degrees" each edge generates.

Space	for	Persona	l Notes
JPucc			

Sub-Section: Complete Graph

Complete Graph (K_n)

<u>K</u> ₄	<u>K</u> 5	<u>K</u> ₆
A B C	A C	B C D E

- A complete graph is a simple graph in which each vertex is connected to _____
- \blacktriangleright A complete graph is denoted by K_n , where n is the number of vertices in the graph.
- Complete graph is a type of regular graph.

Discussion: Can a complete graph also be a type of regular graph?

<u>Discussion:</u> What would the simple graph and its complement add up / overlap to?

Exploration: Number of edges in a complete graph

- Consider n many people handshaking each other.
- It is known that one person needs to handshake everyone else.
- How many handshakes will it take?

Number of Handshakes =

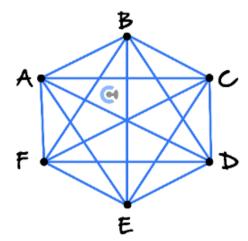
Recalling the arithmetic sum formula: $S_n = \frac{n}{2}(a+l)$, find the total number of handshakes.

Number of Handshakes =

- Similarly Consider K_n: Complete graph with n many vertices.
- How many edges (or handshakes) would the graph have in total?

Number of Edges for Complete Graph =

Number of Edges for Complete Graph



- \blacktriangleright For K_n :
 - Number of Edges for Complete Graph = $\frac{n(n-1)}{2}$

Sub-Section: Connected Graphs

Connected Graphs

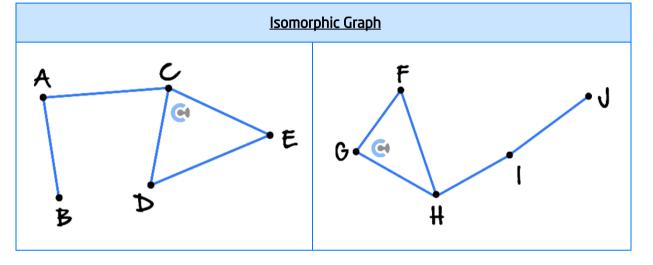
Connected Graph	<u>Disconnected Graph</u>
A • • F	A D E F

- A ______ graph is a graph where it is possible to reach all vertices by moving along edges.
- A graph which is not connected is called a _____ graph.

Section D: Isomorphism and Subgraphs

Sub-Section: Isomorphism

<u>Isomorphism</u>



- Two graphs are **isomorphic** if their vertices and edges differ only by the way in which they are
- Checklist for determining isomorphism:
 - Are the number of vertices the same in each graph?
 - Are the number of edges the same in each graph?
 - Check that the degrees of each vertex match for both graphs.
 - Label each vertex on both graphs and check if there is a correspondence between the vertices.

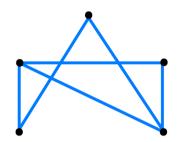
Question 13 Walkthrough - Determining Isomorphism.

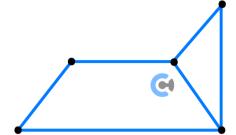
Checklist for determining isomorphism:

- 1. Are the number of vertices the same in each graph?
- **2.** Are the number of edges the same in each graph?
- **3.** Check that the degrees of each vertex match for both graphs.
- **4.** Label each vertex on both graphs and check if there is a correspondence between the vertices.

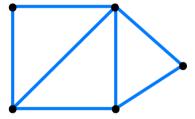
For each of the following pairs of graphs, determine whether the graphs are isomorphic.

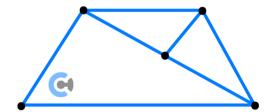
a.





b.





Sub-Section: Subgraphs

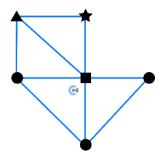
Subgraphs

<u>Original Graph</u>	<u>Subgraph</u>
A D E	A B C E

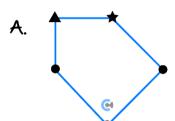
- A ______ is a graph whose vertices and edges are all _____ within the original graph.
- A subgraph can be created by ______edges and vertices from the original graph.

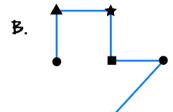
NOTE: There are multiple possible subgraphs.

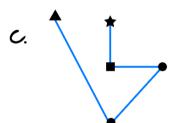
Consider this network graph.

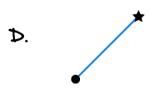


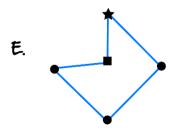
A subgraph of this graph is:











Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

