CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Transformations II [4.3]

Workbook

Outline:

Recap of [4.2] Transformations	Pg 2-7	Rotations Rotations Around the Origin Rotations Around Any Point	Pg 11-20
<u>Transformations of Graphs</u>	Pg 8-10	 General Reflections → Reflections Across a Line y = mx → Reflections Around a Line y = mx + 	Pg 21-28

Learning Objectives:

SM12 [4.3.1] - Transformations of Graphs
 SM12 [4.3.2] - Rotations Around Points
 SM12 [4.3.3] - Reflections in Lines

Section A: Recap of [4.2] Transformations

7

Let's do a quick recap of what we did last week!

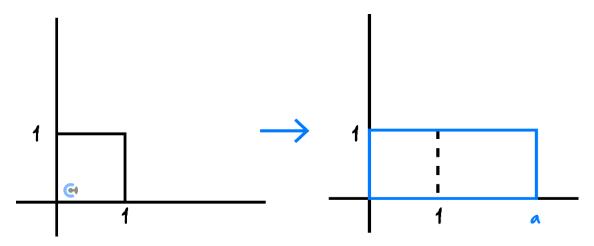
Definition

Linear Transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = A \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

- The (x',y) represents the new points and is called an ______.
- Original point (x, y) is called the **pre-image**
- ► A is the transformation matrix.

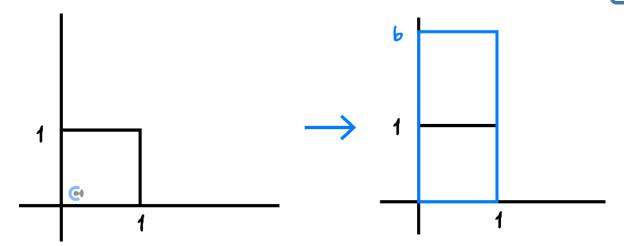
Dilation from the y-axis



Dilation by a factor a from the y-axis

Transformation Matrix = $\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$

Dilation from the x-axis

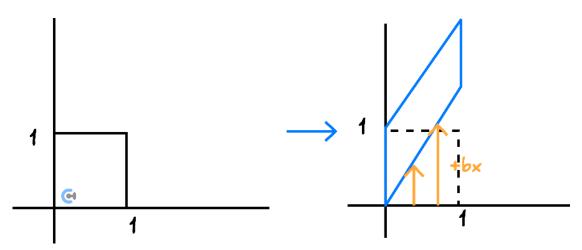


Dilation by a factor b from the x-axis

► Dilation from the *x*-axis changes the _______

Transformation Matrix = $\begin{bmatrix} 1 & 0 \\ 0 & b \end{bmatrix}$

Shear Parallel to the y-axis

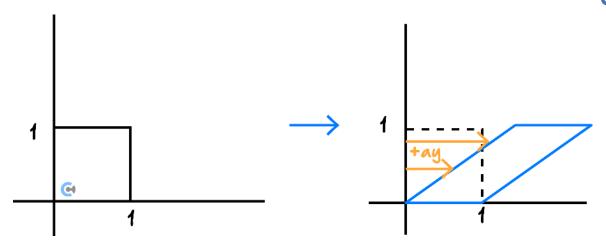


Shear of a factor b parallel to the y-axis

> Shear parallel to y-axis changes the y a multiple + x

Transformation Matrix = $\begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}$

Shear Parallel to the x-axis

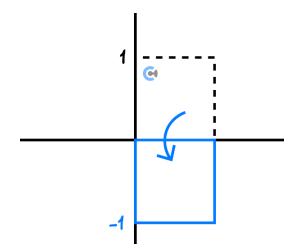


Shear of a factor a parallel to the x-axis

> Shear parallel to x-axis changes the X by a multiple of y

Transformation Matrix =
$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$

Reflection Around x-axis

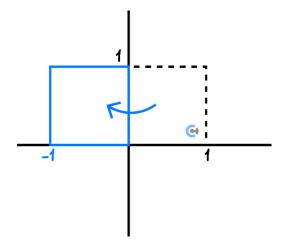


Reflection in the *x*-axis

Reflection in the x-axis changes the _____

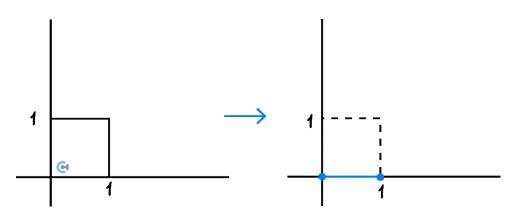
Transformation Matrix =
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Reflection Around y-axis



Reflection in the *y*-axis

Transformation Matrix =
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

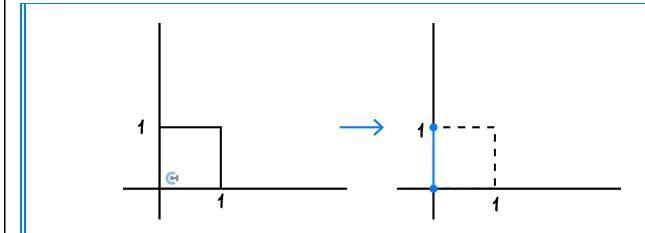


Projection onto x-axis

▶ The ______ becomes 0.

Transformation Matrix = $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

CONTOUREDUCATION



Projection onto y-axis

Transformation Matrix =
$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Question 1 Walkthrough.

a. State the transformation matrix for the shear of a factor 2 parallel to the y-axis and dilation by a factor 3 from

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
transformation matrix found in part a. to the coordinate (3, 1).

b. Apply the transformation matrix found in part a. to the coordinate (3, 1)

$$\begin{bmatrix} (& 0) \\ 6 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & (3) + 0 & (1) \\ 6 & (3) + 3 & (1) \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

Question 2

a. State the transformation matrix for dilation by a factor 2 from the y-axis and the shear of a factor 3 parallel to the x-axis.

$$\begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$

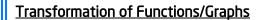
b. Apply the transformation matrix found in **part a.** to the coordinate (2, 4).

$$[23][2] = [4]$$

Section B: Transformations of Graphs

Discussion: If we can transform points, how can we transform function (graphs)

21: 3242 L> 31 = ----L> Sub Hin



$$y = f(x) \rightarrow y' = f(x')$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)$$

- Steps:
 - **1.** Find x' = f(x) and y' = g(y).
 - 2. Rearrange and make x, y the subject.
 - **3.** Substitute into the original function.
 - 4. Remove ' on the variables.

Question 3 Walkthrough.



a. State the transformation matrix for dilation by a factor $\frac{1}{2}$ from the y-axis and reflection around the x-axis.

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

b. Find the image of (x, y) under the transformation described in **part a**.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ -y \end{bmatrix}$$

$$\begin{cases} x' = \frac{1}{2}x \\ y' = -y \end{cases}$$

Consider a function $f(x) = \sqrt{x+3} - 1$. It is known that all the points of f(x) have been transformed by the transformation matrix found in **part a**.

c. Find the transformed graph.

$$\begin{cases} x = 2x \\ y = -y \end{cases}$$

$$y = \sqrt{2x^{2}+3} - 1$$

$$-y' = \sqrt{2x^{2}+3} - 1$$

$$y' = -\sqrt{2x^{2}+3} + 1$$

$$f(x) = -\sqrt{2x+3} + 1$$

Your turn!

Question 4

a. State the transformation matrix for dilation by a factor of 5 from the y-axis and a reflection around the y-axis.

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 0 \\ 0 & 1 \end{bmatrix}$$

b. Find the image of (x, y) under the transformation described in **part a**.

$$\begin{bmatrix} xi \\ yi \end{bmatrix} = \begin{bmatrix} -5 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -5x \\ y \end{bmatrix}$$

Consider a function $f(x) = (x - 4)^2 + 3$.

It is known that all the points of f(x) have been transformed by the transformation matrix found in part a.

c. Find the transformed graph.

$$y' = -5x$$

$$y' = y$$

$$y' = (-\frac{1}{5}x' - 4)^{2} + 3$$

$$y' = (\frac{1}{5}x + 4)^{2} + 3$$

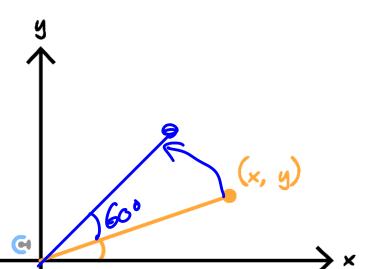
$$y' = (\frac{1}{5}x + 4)^{2} + 3$$

Section C: Rotations

Sub-Section: Rotations Around the Origin

How do we rotate a point around the origin?

Rotation Around the Origin



Rotation θ in the Anticlockwise Direction

Transformation Matrix

 $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$

Question 5 Walkthrough.

a. State the transformation matrix for rotation around the origin 60° anticlockwise.

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{13}{2} & \frac{1}{2} \end{bmatrix}$$

b. Hence, find the image of (3, 1) after it has been rotated around the origin 60° anticlockwise.

$$\begin{bmatrix} \frac{1}{2} & -\frac{12}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{2} - \frac{12}{2} \\ \frac{1}{2} + \frac{3}{2} \frac{12}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{3-13}{2} \\ \frac{1+3\sqrt{3}}{2} \end{bmatrix}$$

Question 6

a. State the transformation matrix for rotation around the origin 30° clockwise.

$$\begin{bmatrix} \cos(-30^{\circ}) & -\sin(-30^{\circ}) \\ \sin(-30^{\circ}) & \cos(-30^{\circ}) \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{2}{2} \end{bmatrix}$$

b. Hence, find the image of (1, 2) after it has been rotated around the origin 30° clockwise.

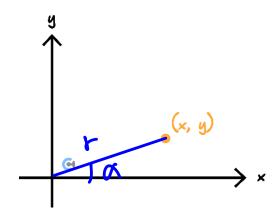
$$\begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} + \sqrt{3} \end{bmatrix}$$

NOTE: If the angle is clockwise, we measure it negatively.

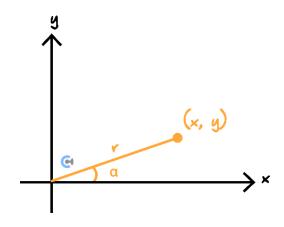
How does this work?

Exploration: Understanding Rotations Around the Origin

 \triangleright Consider a pre-image (x, y).



Let's say the point (x, y) ____ is away from the origin and has an angle of ____ anticlockwise from the x-axis.



$$asx = \frac{x}{r}$$
 $sin x = \frac{y}{r}$

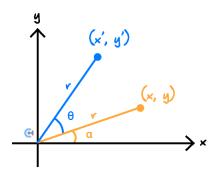
Using SOHCAHTOA, how can we define x and y in terms of r and α ?

$$x = \frac{r \cdot \omega s \alpha}{y = r \cdot \sin \alpha}$$

CONTOUREDUCATION

 \blacktriangleright What happens when we rotate θ anticlockwise around the origin?

Let's visualise the diagram together.



• Using SOHCAHTOA, how can we define x' and y' in terms of r and α ?

$$x' = \underbrace{r \cdot \omega s (d + b)}_{y'}$$
$$y' = \underbrace{r \cdot S in (d + b)}_{z'}$$

 \blacktriangleright Using the compound angle formulas, expand the following and substitute in the original x and y!

$$x' = r \cdot \omega s (d + \omega)$$

$$= r \cdot (\omega s d \cos \theta - s n d \sin \theta)$$

$$= 2 \cdot \omega s p - y \cdot s n \theta$$

$$y' = r \cdot s n (d + \theta)$$

$$= r \cdot s n (d + \theta)$$

$$= r \cdot s n (d + \theta) + \omega s (d) s n (\theta)$$

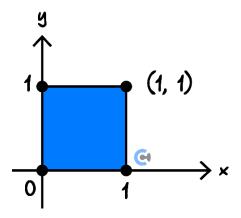
$$= u \cdot \omega s \theta + a \cdot s n \theta$$

Hence, in summary:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x\cos(\theta) - y\sin(\theta) \\ x\sin(\theta) + y\cos(\theta) \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x - \sin \theta \\ y - \sin \theta \end{bmatrix}$$

REMINDER: Determinant of Transformation Matrix:

 \rightarrow Given that A = Transformation matrix.



The unit square was used to visualise how a transformation affects different points.

Area of the image = $|\det(A)| \times Area$ of the pre image

> Determinant of the transformation matrix tells us how the area of the unit circle changes.

<u>Discussion:</u> What would the determinant of the rotation matrix be?

Exploration: Determinant of the Rotation Matrix

Consider the rotation transformation matrix:

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

What does the determinant equal to? Evaluate it using algebra!

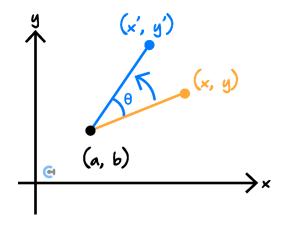
Sub-Section: Rotations Around Any Point

Discussion: Since we know how to rotate around the origin, how can we rotate around any point (a, b)?

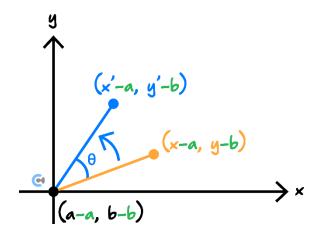
> translace To origin
> Same as before (origin)
> translace Brek

Rotations Around Any Point (a, b)

Consider the rotation θ around the point (a,b) in the anticlockwise direction.



Since we know how to rotate from the origin, let us translate ourselves to the origin!



ONTOUREDUCATION

How do we go from (x-a, y-b) to (x'-a, y'-b)?

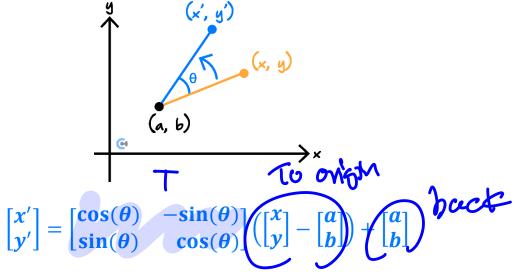
$$\begin{bmatrix}
x' - a \\
y' - b
\end{bmatrix} = \begin{bmatrix}
\omega s & 0 & -\sin 0 \\
\underline{sho} & \omega s & 0
\end{bmatrix}
\begin{bmatrix}
x - a \\
y - b
\end{bmatrix}$$

Now, expand the matrices and make $\begin{bmatrix} x' \\ y' \end{bmatrix}$ the subject!

$$\begin{bmatrix} x' \\ y' \end{bmatrix} - \begin{bmatrix} \mathbf{q} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \mathbf{q} \\ \mathbf{b} \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} & \mathbf{q} \\ \mathbf{b} \end{bmatrix} + \begin{bmatrix} & \mathbf{q} \\ & \mathbf{b} \end{bmatrix}$$

Rotation Around Any Point (a, b)



- The idea is that we:
 - **1.** Translate the points by (-a, -b) so that the centre becomes the origin.
 - **2.** Rotate the point around the origin using the transformation matrix $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.
 - **3.** Translate the points by (a, b) so that we go back to (a, b) being the centre.

Question 7 Walkthrough.

State the image of (1, 1) after the rotation around the point (2, 1), 60° anticlockwise.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos 0 & -\sin 6 \\ \sin 0 & \cos 0 \end{bmatrix} \begin{bmatrix} x - a \\ y - b \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

$$= \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} \\ \end{bmatrix} \begin{bmatrix} x - a \\ y - b \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

$$= \begin{bmatrix} \omega s 60^{\circ} & -sir 60^{\circ} \\ sin 60^{\circ} & \omega s 60^{\circ} \end{bmatrix} \begin{bmatrix} 1 - 2 \\ 1 - 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Question 8

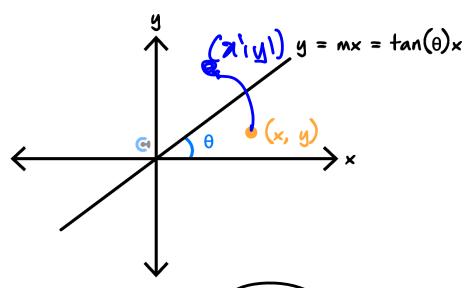
State the image of (4, 2) after the rotation around the point (-1, 1), 30° anticlockwise.

Section D: General Reflections

Sub-Section: Reflections Across a Line y=mx

How do we reflect a point around y = mx?

Reflections Across a Line y = mx



Reflection around $y = mx \neq \tan(\theta)x$

 $m{\theta}$ is the angle the reflection line meets with the x-axis.

Transformation Matrix $=\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$

a. State the transformation matrix for the reflection around $y = \frac{1}{\sqrt{3}}x$. $\theta = \frac{1}{\sqrt{3}}x$.

$$A = \begin{bmatrix} \cos(20) & \sin(20) \\ \sin(20) & -\cos(20) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\frac{\pi}{3}) & \sin(\frac{\pi}{3}) \\ \sin(\frac{\pi}{3}) & -\cos(\frac{\pi}{3}) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

b. Hence, find the image of (3,1) after it has been reflection around $y = \frac{1}{\sqrt{3}}x$.

Question 10

a. State the transformation matrix for the reflection around $y = -\sqrt{3}x$.

$$0 = \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3}$$

$$A = \begin{bmatrix} \cos(-\frac{2\pi}{3}) & \sin(-\frac{2\pi}{3}) \\ \sin(-\frac{2\pi}{3}) & -\omega(-\frac{2\pi}{3}) \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{13}{2} \\ -\frac{13}{2} & \frac{1}{2} \end{bmatrix}$$

b. Hence, find the image of (-1,1) after it has been reflection around $y = -\sqrt{3}x$.

$$\begin{bmatrix} -\frac{1}{2} - \frac{13}{2} \\ -\frac{19}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1-\frac{13}{2} \\ \frac{13+1}{2} \end{bmatrix}$$

NOTE: If the angle is clockwise, we measure it negatively.

Exploration: Understanding Reflection Around y = x

- Consider a transformation matrix for reflection around y = x.
- What angle does y = x make with the x-axis?

Hence, construct the transformation matrix below.

$$\begin{bmatrix} \cos(\mathbf{\hat{q}0}) & \sin(\mathbf{\hat{q}0}) \\ \sin(\mathbf{\hat{q}0}) & -\cos(\mathbf{\hat{q}0}) \end{bmatrix} = \begin{bmatrix} O & & \\ & & O \end{bmatrix}$$

Apply the transformation to the point (x, y). What do you see?

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & (\\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ z \end{bmatrix}$$

- As you can see, Swaps!
- That makes sense as _______ relation is found by reflecting around y = x.

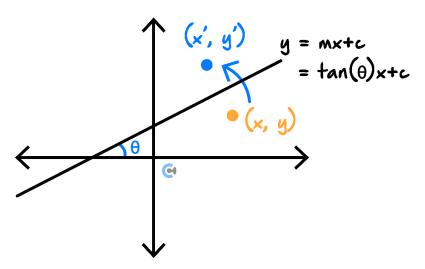
<u>Sub-Section</u>: Reflections Around a Line y = mx + c

<u>Discussion:</u> Since we know how to reflect around y = mx, how can we reflect around y = mx + c?

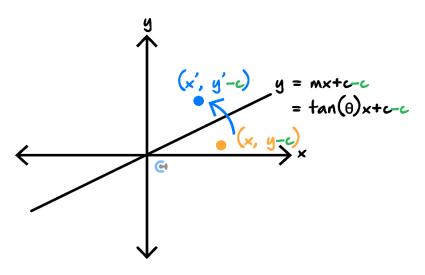
- origin
- -> rotate
- buck

Exploration: Reflection Around y = mx + c

Consider the reflection around y = mx + c.



Since we know how to reflect around y = mx, let's translate it down by c.



CONTOUREDUCATION

How do we go from (x, y - c) to (x', y' - c)?

$$\begin{bmatrix} x' \\ y' - c \end{bmatrix} = \begin{bmatrix} 4 \\ y + c \end{bmatrix}$$

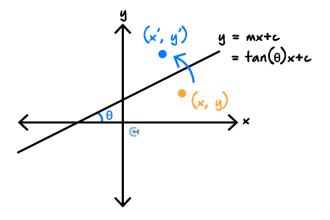
Now, expand the matrices and make $\begin{bmatrix} x' \\ y' \end{bmatrix}$ the subject!

$$\begin{bmatrix} x' \\ y' \end{bmatrix} - \begin{bmatrix} & \mathbf{0} \\ & \mathbf{c} \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} & \mathbf{0} \\ & \mathbf{c} \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} o \\ c \end{bmatrix} + \begin{bmatrix} o \\ c \end{bmatrix}$$

Reflection Across a Line y = mx + c

to origin



$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 0 \\ c \end{bmatrix} + \begin{bmatrix} 0 \\ c \end{bmatrix}$$

- The idea is that we:
 - **1.** Translate the points by (0, -c) so that the line y = mx + c becomes y = mx.
 - **2.** Reflect the point around y = mx using the transformation matrix $\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$.
 - **3.** Translate the points by (0, c) so that we go back to the line y = mx + c.

Question 11 Walkthrough.

$$P$$
 $Q = tan^{-1}(\sqrt{3}) = \frac{11}{3}$

State the image of (1, 1) after the reflection around the line $y = \sqrt{3}x + 1$.

State the image of (1,1) after the reflection around the line
$$y = \sqrt{3}x + 1$$
.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} Gos(26) \\ Sin(26) \\ - \omega s(26) \end{bmatrix} \begin{bmatrix} x \\ y - c \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \omega s(\frac{2\pi}{3}) \\ Sin(\frac{2\pi}{3}) \\ - \omega s(\frac{2\pi}{3}) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} \begin{bmatrix} \frac{\pi}{3} \\ \frac{\pi}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{\pi}{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Question 12

State the image of (2, -1) after the reflection around the line $y = \frac{1}{\sqrt{3}}x - 1$.

$$\begin{bmatrix}
3 & -\frac{1}{3} & -\frac{1}{3} \\
y' & -\frac{1}{3} & -\frac{1}{3}
\end{bmatrix} = \begin{bmatrix}
3 & -\frac{1}{3} & -\frac{1}{3} \\
y' & -\frac{1}{3} & -\frac{1}{3}
\end{bmatrix} \begin{bmatrix}
3 & -\frac{1}{3} & -\frac{1}{3} \\
y' & -\frac{1}{3} & -\frac{1}{3}
\end{bmatrix} \begin{bmatrix}
2 & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3}
\end{bmatrix} \begin{bmatrix}
2 & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3}
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3}
\end{bmatrix} + \begin{bmatrix}
1 & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3}
\end{bmatrix}$$

Contour Check

□ Learning Objective: [4.3.1] - Transformations of graphs

Key Takeaways

☐ Transformation of Functions/Graphs:

$$y = f(x) \to y' = f(x')$$
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)$$

- O Steps:
 - **1.** Find x' = f(x) and y' = g(y).
 - 2. Rearrange and make 2 the subject.
 - 3. Substitute into the original **_________**.
 - **4.** Remove ' on the variables.

□ <u>Learning Objective</u>: [4.3.2] – Rotations around points

Key Takeaways

 \square Rotation θ in the Anticlockwise Direction:

Rotation θ in the Anticlockwise Direction

$$Transformation Matrix = \begin{bmatrix} los(b) & -sin(b) \\ sin(b) & cos(b) \end{bmatrix}$$

☐ Rotation Around Any Point (*a*, *b*):

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{bmatrix} a \\ b \end{pmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

- O The idea is that we:
 - **1.** Translate the points by (-a, -b) so that the centre becomes the **origin**
 - **2.** Rotate the point around the origin using the transformation matrix $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$
 - 3. Translate the points by (a, b) so that we go back to (a, b) being the centre.

□ Learning Objective: [4.3.3] - Reflections in lines

Key Takeaways

 \square Reflections Across a Line y = mx:

Reflection around
$$y = mx = \tan(\theta)x$$

 $\ \square$ $\ \theta$ is the angle the reflection line meets with the x-axis.

Transformation Matrix =
$$\begin{bmatrix} \cos(26) & \sin(26) \\ \sin(26) & -\cos(26) \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 0 \\ c \end{bmatrix} \end{pmatrix} + \begin{bmatrix} 0 \\ c \end{bmatrix}$$

- O The idea is that we:
 - **1.** Translate the points by (0, -c) so that the line y = mx + c becomes
 - **2.** Reflect the point around y = mx using the transformation matrix $\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$.
 - **3.** Translate the points by \bigcirc so that we go back to the line y = mx + c.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Transformations II [4.3]

Test

21 Marks. 1 Minute Reading. 20 Minutes Writing.

Results:

Test Questions	/21	

Section A: Test Questions (21 Marks)

Question 1 (3 marks)

State whether the statement is **true** or **false**.

	Statement	True	False
a.	To transform a function, we simply substitute in the x and y in terms of x' and y' .		
b.	Rotations and reflections preserve the length of shapes, but dilations and shears do not.		
c.	The rotation of θ clockwise around the origin is given by the following matrix: $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$		
d.	A rotation by 60° anti-clockwise about the point (1,2) is the same as translating one unit down, two units to the left, rotating 60° about the origin, and then translating one unit upward, and finally translating two units to the right.		
e.	To reflect around a point (a, b) , we first translate a units right and b units up.		
f.	To reflect a point about the line $y = -2x + 1$, first you need to translate the point one unit down, and then reflect it about the line $y = -2x$.		

Ques	stion 2 (3 marks)	
Find	the equation of the line $y = \frac{1}{2}x - 1$ after it undergoes a shear of factor -2 parallel to the y-axis.	
_		
_		
-	·	
-		
_		
_		
_		
-		
Spa	ce for Personal Notes	

Question 3 (4 marks)

Find the matrix corresponding to each of the following linear transformations, and hence find the image of the point (1,2) after undergoing each of the transformations.

a. Rotation by 60° anticlockwise. (2 marks)

b. Reflection in the line $y = \frac{1}{\sqrt{3}}x$. (2 marks)

•	Find the matrix that will reflect the point (x, y) in the line through the origin at an angle of 30° to the positi direction of the x -axis. (2 marks)
	Find the matrix that will reflect the point (x, y) in the line $y = 2x$. (3 marks)
p	ace for Personal Notes

Question 5 (6 marks)

Find the equation of the graph of y = 3x + 1 under a reflection in the line $y = \frac{1}{\sqrt{3}}x$.

$$A = \begin{bmatrix} \cos(\frac{1}{3}) & \sin(\frac{1}{3}) \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\omega \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

transform graph:

2 fearrange

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{3}{2} & \frac{7}{2} & \frac{7}{2} \\ \frac{7}{2} & \frac{7}{2} & \frac{7}{2} & \frac{7}{2} \end{bmatrix}$$

$$y = (3(3-1))((3-3)x-2)$$
26

$$= \left(\frac{6}{13} - \frac{5\sqrt{3}}{13}\right)\chi + \left(1 - \frac{3\sqrt{3}}{13}\right)$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

