

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Transformations II [4.3]

Workbook

Outline:

-			
			<u></u>
		<u>Rotations</u>	Pg 11-20
		Rotations Around the Origin	
Recap of [4.2] Transformations	Pg 2-7	Rotations Around Any Point	
Transformations of Graphs	g 8-10	General Reflections	Pg 21-28
·		Reflections Across a Line $y = mx$	
		Reflections Around a Line $y = mx + mx$	С

Learning Objectives:

SM12 [4.3.1] - Transformations of Graphs
 SM12 [4.3.2] - Rotations Around Points
 SM12 [4.3.3] - Reflections in Lines

Section A: Recap of [4.2] Transformations

7

Let's do a quick recap of what we did last week!

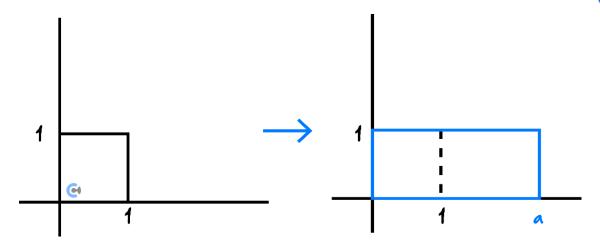
Definition

Linear Transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = A \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

- The (x', y) represents the new points and is called an ______.
- Original point (x, y) is called the _______
- ➤ *A* is the transformation matrix.

Dilation from the y-axis

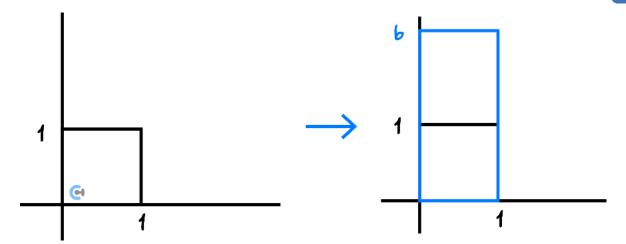


Dilation by a factor a from the y-axis

Dilation from the *y*-axis changes the _____

Transformation Matrix = $\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$

Dilation from the x-axis

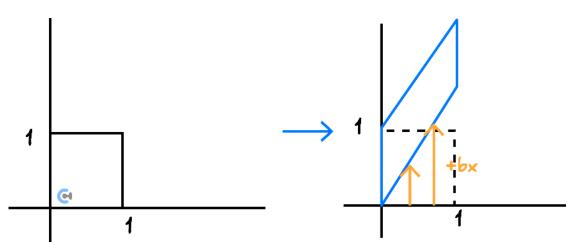


Dilation by a factor b from the x-axis

 \blacktriangleright Dilation from the x-axis changes the ______.

Transformation Matrix =
$$\begin{bmatrix} 1 & 0 \\ 0 & b \end{bmatrix}$$

Shear Parallel to the y-axis

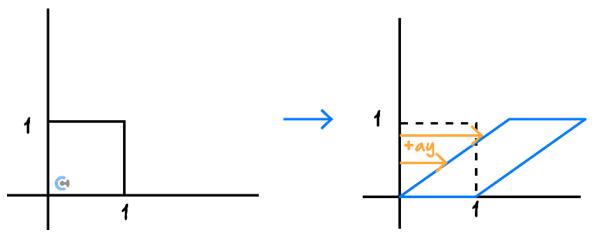


Shear of a factor b parallel to the y-axis

➤ Shear parallel to *y*-axis changes the ______

Transformation Matrix =
$$\begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}$$

Shear Parallel to the x-axis

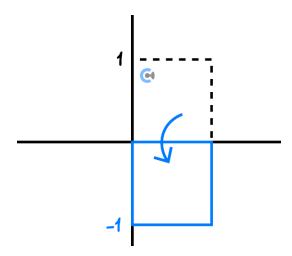


Shear of a factor a parallel to the x-axis

 \blacktriangleright Shear parallel to x-axis changes the ______.

Transformation Matrix =
$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$

Reflection Around x-axis

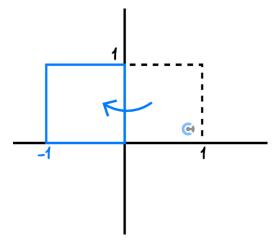


Reflection in the *x*-axis

Reflection in the x-axis changes the ______.

Transformation Matrix =
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

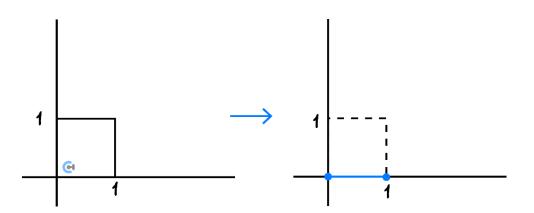
Reflection Around y-axis



Reflection in the *y*-axis

Reflection in the y-axis changes the ______.

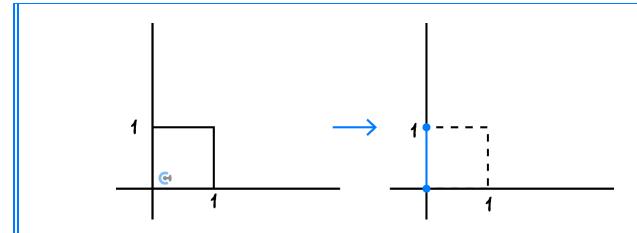
Transformation Matrix =
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$



Projection onto x-axis

➤ The ______ becomes 0.

Transformation Matrix =
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$



Projection onto y-axis

➤ The ______ becomes 0.

Transformation Matrix =
$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

the x-axis.

Qu	nestion 1 Walkthrough.
a.	State the transformation matrix for the shear of a factor 2 parallel to the y-axis and dilation by a factor 3 from

b. Apply the transformation matrix found in **part a.** to the coordinate (3, 1).

^	_
Onestion	2

a. State the transformation matrix for dilation by a factor 2 from the *y*-axis and the shear of a factor 3 parallel to the *x*-axis.

b. Apply the transformation matrix found in **part a.** to the coordinate (2, 4).

Section B: Transformations of Graphs

Discussion: If we can transform points, how can we transform functions/graphs?

Transformation of Functions/Graphs

$$y = f(x) \to y' = f(x')$$

$$y = f(x) \to y' = f(x')$$
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)$$

- Steps:
 - **1.** Find x' = f(x) and y' = g(y).
 - **2.** Rearrange and make x, y the subject.
 - **3.** Substitute into the original function.
 - **4.** Remove ' on the variables.

Question 3 Walkthrough.

a. State the transformation matrix for dilation by a factor $\frac{1}{2}$ from the y-axis and reflection around the x-axis.

b. Find the image of (x, y) under the transformation described in **part a**.

Consider a function $f(x) = \sqrt{x+3} - 1$. It is known that all the points of f(x) have been transformed by the transformation matrix found in **part a**.

c. Find the transformed graph.

Your turn!

Question 4

a. State the transformation matrix for dilation by a factor of 5 from the y-axis and a reflection around the y-axis.

b. Find the image of (x, y) under the transformation described in **part a**.

Consider a function $f(x) = (x - 4)^2 + 3$.

It is known that all the points of f(x) have been transformed by the transformation matrix found in part a.

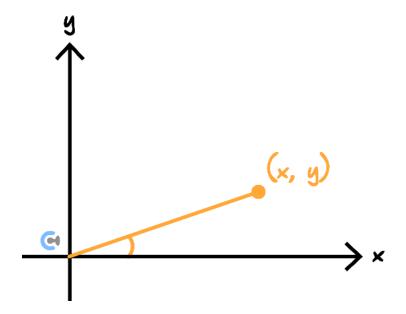
c. Find the transformed graph.

Section C: Rotations

Sub-Section: Rotations Around the Origin

How do we rotate a point around the origin?

Rotation Around the Origin



Rotation θ in the Anticlockwise Direction

$$Transformation \ Matrix = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Question 5 Walkthrough.				
Quantum ought				
a. State the transformation matrix for rotation around the origin 60° anticlockwise.				
b. Hence, find the image of (3, 1) after it has been rotated around the origin 60° anticlockwise.				
Tience, find the image of (3, 1) after it has been fotated around the origin of anticioekwise.				

Omestica	~
Question	U

a. State the transformation matrix for rotation around the origin 30° clockwise.

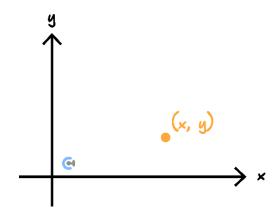
b. Hence, find the image of (1, 2) after it has been rotated around the origin 30° clockwise.

NOTE: If the angle is clockwise, we measure it negatively.

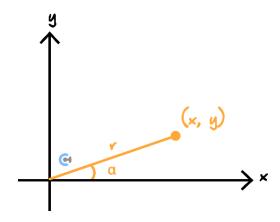
How does this work?

Exploration: Understanding Rotations Around the Origin

ightharpoonup Consider a pre-image (x, y).



Let's say the point (x, y) _____ is away from the origin and has an angle of _____ anticlockwise from the x-axis.

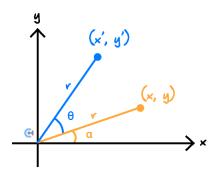


b Using SOHCAHTOA, how can we define x and y in terms of r and α?

$$x =$$

 \blacktriangleright What happens when we rotate θ anticlockwise around the origin?

Let's visualise the diagram together.



Using SOHCAHTOA, how can we define x' and y' in terms of r and α?

$$x' =$$

 \blacktriangleright Using the compound angle formulas, expand the following and substitute in the original x and y!

$$x' =$$

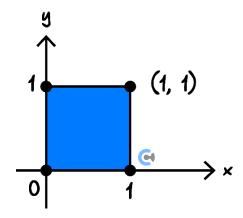
$$y' =$$

Hence, in summary:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x\cos(\theta) - y\sin(\theta) \\ x\sin(\theta) + y\cos(\theta) \end{bmatrix} = \begin{bmatrix} x^{2} \\ y^{2} \end{bmatrix}$$

REMINDER: Determinant of Transformation Matrix:

 \rightarrow Given that A = Transformation matrix.



The unit square was used to visualise how a transformation affects different points.

Area of the image = $|\det(A)| \times Area$ of the pre image

> Determinant of the transformation matrix tells us how the area of the unit circle changes.

<u>Discussion:</u> What would the determinant of the rotation matrix be?

Exploration: Determinant of the Rotation Matrix

Consider the rotation transformation matrix:

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

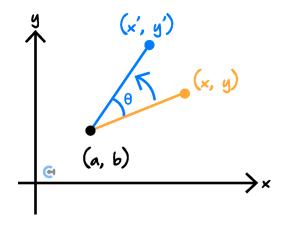
What does the determinant equal to? Evaluate it using algebra!

Sub-Section: Rotations Around Any Point

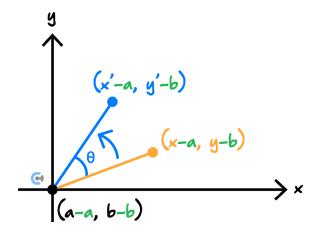
<u>Discussion:</u> Since we know how to rotate around the origin, how can we rotate around any point (a, b)?

Rotations Around Any Point (a, b)

 \blacktriangleright Consider the rotation θ around the point (a,b) in the anticlockwise direction.



Since we know how to rotate from the origin, let us translate ourselves to the origin!



How do we go from (x - a, y - b) to (x' - a, y' - b)?

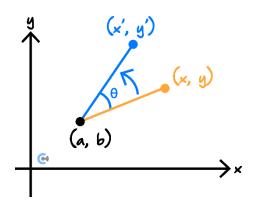
$$\begin{bmatrix} x' - a \\ y' - b \end{bmatrix} = \begin{bmatrix} x - a \\ y - b \end{bmatrix}$$

Now, expand the matrices and make $\begin{bmatrix} x' \\ y' \end{bmatrix}$ the subject!

$$\begin{bmatrix} x' \\ y' \end{bmatrix} - \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} & & \\ \end{bmatrix} + \begin{bmatrix} & & \\ & & \end{bmatrix}$$

Rotation Around Any Point (a, b)



$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{bmatrix} a \\ b \end{pmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

- The idea is that we:
 - **1.** Translate the points by (-a, -b) so that the centre becomes the origin.
 - **2.** Rotate the point around the origin using the transformation matrix $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.
 - **3.** Translate the points by (a, b) so that we go back to (a, b) being the centre.

Question 7 Walkthrough.		
State the image of (1, 1) after the rotation around the point (2, 1), 60° anticlockwise.		
Space for Personal Notes		

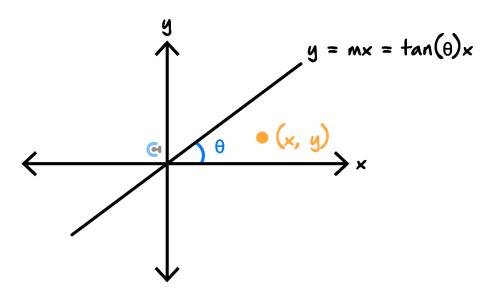
Question 8		
State the image of $(4,2)$ after the rotation around the point $(-1,1)$, 30° anticlockwise.		
Space for Personal Notes		
Space for Personal Notes		

Section D: General Reflections

Sub-Section: Reflections Across a Line y = mx

How do we reflect a point around y = mx?

Reflections Across a Line y = mx



Reflection around $y = mx = \tan(\theta)x$

 \triangleright θ is the angle the reflection line meets with the x-axis.

Transformation Matrix =
$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$

Question 9 Walkthrough.

a. State the transformation matrix for the reflection around $y = \frac{1}{\sqrt{3}}x$.

b. Hence, find the image of (3, 1) after it has been reflection around $y = \frac{1}{\sqrt{3}}x$.

Question 10

a. State the transformation matrix for the reflection around $y = -\sqrt{3}x$.

b. Hence, find the image of (-1, 1) after it has been reflection around $y = -\sqrt{3}x$.

 $\label{NOTE: NOTE: If the angle is clockwise, we measure it negatively.}$

What about reflection around y = x?

Exploration: Understanding Reflection Around y = x

- Consider a transformation matrix for reflection around y = x.
- What angle does y = x make with the x-axis?
 - **@** _____
 - Hence, construct the transformation matrix below.

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ -\cos(2\theta) & \cos(2\theta) \end{bmatrix}$$

Apply the transformation to the point (x, y). What do you see?

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} =$$

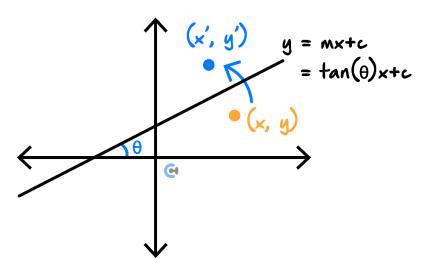
- As you can see, _____ swaps!
- That makes sense as _____ relation is found by reflecting around y = x.

Sub-Section: Reflections Around a Line y = mx + c

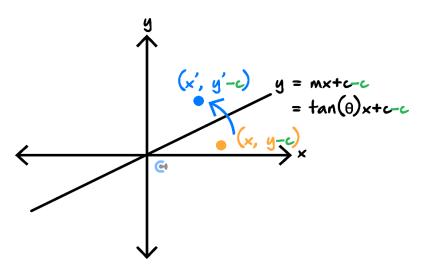
<u>Discussion:</u> Since we know how to reflect around y = mx, how can we reflect around y = mx + c?

Exploration: Reflection Around y = mx + c

Consider the reflection around y = mx + c.



Since we know how to reflect around y = mx, let's translate it down by c.



How do we go from (x, y - c) to (x', y' - c)?

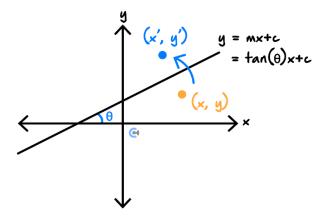
$$\begin{bmatrix} x' \\ y' - c \end{bmatrix} = \begin{bmatrix} x \\ y - c \end{bmatrix}$$

Now, expand the matrices and make $\begin{bmatrix} x' \\ y' \end{bmatrix}$ the subject!

$$\begin{bmatrix} x' \\ y' \end{bmatrix} - \begin{bmatrix} & & \\ & \\ & \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} & & \\ & \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \sin(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) & \cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\theta) & \cos(2\theta) \\ \cos(2\theta) &$$

Reflection Across a Line y = mx + c



$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 0 \\ c \end{bmatrix} \end{pmatrix} + \begin{bmatrix} 0 \\ c \end{bmatrix}$$

- The idea is that we:
 - **1.** Translate the points by (0, -c) so that the line y = mx + c becomes y = mx.
 - **2.** Reflect the point around y = mx using the transformation matrix $\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$
 - **3.** Translate the points by (0,c) so that we go back to the line y=mx+c.

Onestion	11	Walkthrough.
Question	11	waikun ougn.

State the image of (1, 1) after the reflection around the line $y = \sqrt{3}x + 1$.

Question 12

State the image of (2, -1) after the reflection around the line $y = \frac{1}{\sqrt{3}}x - 1$.

Contour Check

□ Learning Objective: [4.3.1] - Transformations of graphs

Key Takeaways

☐ Transformation of Functions/Graphs:

$$y = f(x) \to y' = f(x')$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right)$$

O Steps:

- **1.** Find x' = f(x) and y' = g(y).
- 2. Rearrange and make _____ the subject.
- **3.** Substitute into the original ______.
- **4.** Remove ' on the variables.

□ <u>Learning Objective</u>: [4.3.2] – Rotations around points

Key Takeaways

 \square Rotation θ in the Anticlockwise Direction:

Rotation θ in the Anticlockwise Direction

Transformation Matrix =

☐ Rotation Around Any Point (a, b):

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} a \\ b \end{bmatrix} \end{pmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

- O The idea is that we:
 - 1. Translate the points by (-a, -b) so that the centre becomes the _____
 - **2.** Rotate the point around the origin using the transformation matrix $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.
 - **3.** _____ the points by (a, b) so that we go back to (a, b) being the centre.

Learning Objective: [4.3.3] - Reflections in lines

Key Takeaways

 \square Reflections Across a Line y = mx:

Reflection around
$$y = mx = \tan(\theta)x$$

 $\ \square$ $\ \theta$ is the angle the reflection line meets with the x-axis.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 0 \\ c \end{bmatrix} + \begin{bmatrix} 0 \\ c \end{bmatrix}$$

- The idea is that we:
 - **1.** Translate the points by (0, -c) so that the line y = mx + c becomes _____.
 - **2.** Reflect the point around y = mx using the transformation matrix $\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$.
 - **3.** Translate the points by _____ so that we go back to the line y = mx + c.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- **What To Do?** Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

