

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Transformations II [4.3]

Test

21 Marks. 1 Minute Reading. 20 Minutes Writing.

Results:

Test Questions	/21	

Section A: Test Questions (21 Marks)

Question 1 (3 marks)

State whether the statement is **true** or **false**.

	Statement	True	False
a.	To transform a function, we simply substitute in the x and y in terms of x' and y' .		
b.	Rotations and reflections preserve the length of shapes, but dilations and shears do not.		
c.	The rotation of θ clockwise around the origin is given by the following matrix: $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$		
d.	A rotation by 60° anti-clockwise about the point (1,2) is the same as translating one unit down, two units to the left, rotating 60° about the origin, and then translating one unit upward, and finally translating two units to the right.		
e.	To reflect around a point (a, b) , we first translate a units right and b units up.		
f.	To reflect a point about the line $y = -2x + 1$, first you need to translate the point one unit down, and then reflect it about the line $y = -2x$.		

Question 2 (3 marks)	
Find the equation of the line $y = \frac{1}{2}x - 1$ after it undergoes a shear of factor -2 parallel to the y-axis.	
Space for Personal Notes	

CONTOUREDUCATION

Question 3 (4 marks)

Find the matrix corresponding to each of the following linear transformations, and hence find the image of the point (1,2) after undergoing each of the transformations.

a. Rotation by 60° anticlockwise. (2 marks)

b. Reflection in the line $y = \frac{1}{\sqrt{3}}x$. (2 marks)

Space for Personal Notes

	Find the matrix that will reflect the point (x, y) in the line through the origin at an angle of 30° to the positive direction of the x -axis. (2 marks)
	Find the matrix that will reflect the point (x, y) in the line $y = 2x$. (3 marks)
p	ace for Personal Notes

	stion 5 (6 marks)
nd	the equation of the graph of $y = 3x + 1$ under a reflection in the line $y = \frac{1}{\sqrt{3}}x$.
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
_	
nac	ce for Personal Notes
,- u (

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

