

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Transformations II [4.3]

Homework Solutions

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 02 - Pg 13
Supplementary Questions	Pg 14 - Pg 23

Section A: Compulsory Questions

Sub-Section [4.3.1]: Transformations of Graphs

Question 1

a. State the transformation matrix for dilation by factor 2 from the x-axis, followed by a reflection in the y-axis.

 $D_x = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad R_y = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ $T = R_y D_x = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$

b. Find the image of the point (x, y) under this transformation.

 $\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ 2y \end{bmatrix}$

c. Consider the graph $f(x) = (x-3)^2 - 1$. All points of the graph have been transformed by the matrix in **part** a. Write the equation of the transformed graph.

We have $x' = -x \implies x = -x'$ and $y' = 2y \implies y = \frac{y}{2}$. Sub these into the equation without the dashes.

 $\frac{y}{2} = (-x-3)^2 - 1 \Rightarrow y = 2(x+3)^2 - 2$

ONTOUREDUCATION

Question 2

a. State the transformation matrix for dilation by factor 3 from the y-axis, followed by a reflection in the x-axis, and then a shear in the x-direction with shear factor 1.

 $D_y = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}, \quad R_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad S_x = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $T = S_x R_x D_y = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 0 & -1 \end{bmatrix}$

b. Find the image of the point (x, y) under this transformation.

 $\begin{bmatrix} 3 & -1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x - y \\ -y \end{bmatrix}$

c. Consider the graph f(x) = 6x + 7. All points of the graph have been transformed by the matrix in **part a.** Write an equation for the transformed graph.

We have x' = 3x - y and $y' = -y \implies y = -y'$. Thus $x' = 3x + y' \implies x = \frac{x'}{3} - \frac{y'}{3}$. Removing the dashes and subbing in to y = f(x) we have: $-y = 2x - 2y + 7 \implies y = 2x + 7$

ONTOUREDUCATION

Question 3

a. State the transformation matrix for a dilation by factor $\frac{1}{2}$ from the x-axis, followed by a rotation of $\frac{\pi}{2}$ clockwise.

 $D_x = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}, \quad R = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ $T = RD_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & 0 \end{bmatrix}$

b. Find the image of (x, y) under this transformation.

 $\begin{bmatrix} 0 & \frac{1}{2} \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{y}{2} \\ -x \end{bmatrix}$

c. Consider the graph $f(x) = x^2 + 2x$. All points have been transformed by the matrix in **part a**. Write the equation of the transformed graph.

Use $x' = \frac{1}{2}y \implies y = 2x'$ and $y' = -x \implies x = -y'$: $2x = y^2 - 2y \implies x = \frac{y^2}{2} - y$

CONTOUREDUCATION

Question 4 Tech-Active.

Find the equation of the line y = 2x - 3 under the transformation matrix $T = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$.

Space

```
 \begin{aligned} &\inf[58] = T = \{\{3, -1\}, \{2, 1\}\} \} \\ &\inf[59] = Inverse[T] \cdot \{x, y\} \\ &\inf[59] = \left\{\frac{x}{5} + \frac{y}{5}, -\frac{2x}{5} + \frac{3y}{5}\right\} \end{aligned} \qquad \qquad \begin{aligned} &\sup[-2\cdot x, \frac{3\cdot y}{5} - \frac{3\cdot y}{5}] \\ &\inf[60] = Solve[-2 \times /5 + 3 y / 5 = 2 (x / 5 + y / 5) - 3, y] \end{aligned}
```


Sub-Section [4.3.2]: Rotations Around Points

Question 5

a. A point P = (3, 1) is rotated 90° anticlockwise about the origin. Find the coordinates of the image point.

A 90° anticlockwise rotation about the origin maps $(x,y) \to (-y,x)$. So, $(3,1) \to (-1,3)$.

b. The graph of $f(x) = x^2$ is rotated 180° about the origin. Write the equation of the transformed graph.

A 180° rotation about the origin maps $(x, y) \to (-x, -y)$. So the new graph is $-y = (-x)^2 \implies y = -x^2$.

Ouestion 6

a. A triangle has vertices A(2,0), B(2,3), C(4,0). The triangle is rotated 90° clockwise about the origin. Find the coordinates of the new vertices.

A 90° clockwise rotation maps $(x,y) \rightarrow (y,-x)$. $A(2,0) \rightarrow (0,-2)$ $B(2,3) \rightarrow (3,-2)$ $C(4,0) \rightarrow (0,-4)$

CONTOUREDUCATION

b. The graph of $f(x) = \sqrt{x}$ is rotated 270° anticlockwise about the origin. Write the equation of the transformed graph.

A 270° anticlockwise rotation is the same as a 90° clockwise rotation: $(x, y) \rightarrow (y, -x)$. So x' = y and $y' = -x \implies x = -y$.

So the new graph is given by $x = \sqrt{-y}$

Question 7

a. A point A (6, 2) is rotated 90° anticlockwise about the point (3, 1). Find the image of point A.

Translate so rotation is about origin: $A \rightarrow (3,1)$. Relative position: (6,2) - (3,1) = (3,1). Rotate: $(3,1) \rightarrow (-1,3)$. Translate back: (-1,3) + (3,1) = (2,4).

b. The graph of $f(x) = \frac{1}{x-1}$ is rotated 90° clockwise about the point (1,0). Write the equation of the transformed graph.

 $T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x-1 \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} y+1 \\ 1-x \end{bmatrix}$

So $x' = y + 1 \implies y = x' - 1$ and $y' = 1 - x \implies x = 1 - y'$ Thus $x - 1 = \frac{1}{-y} \implies y = \frac{1}{1 - x}$.

Question 8 Tech-Active.

A point (3, -2) is rotated 135° anticlockwise about the origin. Find the image of the point.

$$-\left(-\frac{1}{\sqrt{2}}, \frac{5}{\sqrt{2}}\right)$$

$$-\left[\operatorname{Define} f(x) - \left[\cos(x) - \sin(x)\right]\right] \qquad Done$$

$$-\left[\frac{3 \cdot \pi}{4} \cdot \begin{bmatrix} 3 \\ -2 \end{bmatrix}\right] \qquad \left[\frac{-\sqrt{2}}{2} \\ \frac{5 \cdot \sqrt{2}}{2}\right] \qquad \operatorname{define} r(x) = \left[\cos(x) - \sin(x) \\ \sin(x) \cos(x)\right]$$

$$-\left[\operatorname{In}[69] = r[x_{-}] := \left\{\left\{\operatorname{Cos}[x], -\operatorname{Sin}[x]\right\}, \left\{\operatorname{Sin}[x], \operatorname{Cos}[x]\right\}\right\}$$

Space

```
In[68]:= r[3 Pi / 4] . {3, -2} // FullSimplify

Out[68]:= \left\{-\frac{1}{\sqrt{2}}, \frac{5}{\sqrt{2}}\right\}
```


Sub-Section [4.3.3]: Reflections in Lines

Question 9

a.	Reflect the	point	(3,5)	in the	line y :	= x.
----	-------------	-------	-------	--------	----------	------

Reflecting in y = x swaps the coordinates:

$$(3,5)\mapsto(5,3)$$

b. Reflect the point (-2, 4) in the line y = -x.

Reflecting in y = -x maps (x, y) to (-y, -x):

$$(-2,4) \mapsto (-4,2)$$

Ouestion 10

a. Reflect the point (4, 0) in the line y = 2x + 1.

Translate the line so it passes through the origin and apply a reflection matrix: The reflection matrix is obtained by letting $\theta = \arctan(2)$. Then we use double angle formulas to find $\cos(2\theta)$ and $\sin(2\theta)$. $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = \frac{1}{5} - \frac{4}{5} = -\frac{3}{5}$ and $\sin(2\theta) = 2 \times \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}} = \frac{4}{5}$.

$$R = \frac{1}{5} \begin{bmatrix} -3 & 4\\ 4 & 3 \end{bmatrix}$$

Then apply this matrix to the translated point and shift back:

$$(4,0)\mapsto \frac{1}{5}\begin{bmatrix} -3 & 4\\ 4 & 3\end{bmatrix}\begin{bmatrix} 4\\ -1\end{bmatrix} + \begin{bmatrix} 0\\ 1\end{bmatrix} = \left(-\frac{16}{5},\frac{18}{5}\right)$$

CONTOUREDUCATION

b. Reflect the point $(-3, -2)$ in the line $y =$	$-\frac{1}{2}x+4.$
Use reflection matrix f	for $y = -\frac{1}{2}x$:
	$R = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & -\frac{3}{5} \end{bmatrix}$
Apply to translated po	oint then shift back:
	$\begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} -3 \\ -6 \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 10 \end{bmatrix}$
So $(-3, -2) \mapsto (3, 10)$	

Space for Personal Notes			

ONTOUREDUCATION

Question 11

a. Reflect the graph of the line y = 3x - 1 in the line y = 2x.

Choose points A = (0, -1), B = (1, 2). Apply reflection matrix for y = 2x

$$R = \left[\begin{array}{cc} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{array}\right]$$

Then

$$\left[\begin{array}{c}x'\\y'\end{array}\right]=\left[\begin{array}{cc}-\frac{3}{5}&\frac{4}{5}\\\frac{4}{5}&\frac{3}{5}\end{array}\right]\left[\begin{array}{c}x\\y\end{array}\right]$$

Multiply both sides on the left by the inverse matrix to get:

$$x=-\frac{3x'}{5}+\frac{4y'}{5}$$
 and $y=\frac{4x'}{5}+\frac{3y'}{5}$

Thus, $\frac{4x}{5} + \frac{3y}{5} = 3\left(-\frac{3x'}{5} + \frac{4y'}{5}\right) - 1.$ $\implies y = \frac{1}{9}(13x + 5)$

b. Reflect the line y = -x + 5 in the line $y = \frac{1}{2}x + 1$.

Pick points A = (0,5), B = (5,0) that are both on the first line. Use reflection matrix:

$$R = \left[\begin{array}{cc} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{array} \right]$$

Then

$$A' = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} 0 \\ 4 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{16}{5} \\ -\frac{7}{5} \end{bmatrix}$$

Similarly, we find $B' = \left(\frac{11}{5}, \frac{28}{5}\right)$. Then the reflected line is the line through these points. Thus

$$y = 21 - 7x$$

done

CONTOUREDUCATION

Question 12 Tech-Active.

Reflect the point (-5,3) in the line y = 2x + 6.

$$-\left(\frac{3}{5}, \frac{1}{5}\right)$$

Define
$$f(x) = \begin{bmatrix} \cos(2 \cdot x) & \sin(2 \cdot x) \\ \sin(2 \cdot x) & -\cos(2 \cdot x) \end{bmatrix}$$

Done

tExpand $f(\tan^{-1}(2)) \cdot \begin{bmatrix} -5 \\ 3-6 \end{bmatrix} + \begin{bmatrix} 0 \\ 6 \end{bmatrix}$
 $\begin{bmatrix} \frac{3}{5} \\ \frac{1}{5} \end{bmatrix}$

define
$$t(x) = \begin{bmatrix} \cos(2*x) & \sin(2*x) \\ \sin(2*x) & -\cos(2*x) \end{bmatrix}$$

$$simplify(t(tan^{-1}(2))*\begin{bmatrix} -5\\ 3-6 \end{bmatrix} + \begin{bmatrix} 0\\ 6 \end{bmatrix}$$

Spa

```
In[79]:= t[x_{_}] := \{\{Cos[2x], Sin[2x]\}, \\ \{Sin[2x], -Cos[2x]\}\} 
In[81]:= t[ArcTan[2]].\{-5, 3-6\} + \{0, 6\} // FullSimplify
Out[81]:= \left\{\frac{3}{5}, \frac{1}{5}\right\}
```


Sub-Section: The 'Final Boss'

Question 13

A graph of the function $f(x) = \sqrt{x}$ is transformed in a sequence of steps.

The function is first reflected in the y-axis, then translated 2 units right and 3 units up. Write the equation of the resulting function.

Reflection in the y-axis gives $f(-x) = \sqrt{-x}$. Translation right 2 and up 3 gives:

$$y = \sqrt{-(x-2)} + 3$$

b. The point P(4, f(4)) is rotated 90° anti-clockwise about the origin. Find the coordinates of the image point.

$$f(4) = \sqrt{4} = 2$$
, so $P = (4, 2)$.

$$R = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

Thus, a 90° anti-clockwise rotation about the origin maps $(x,y) \to (-y,x)$. Thus,

$$(4,2) \mapsto (-2,4)$$

c. Reflect the line y = 2x - 3 in the line y = -2x. Find the equation of the reflected line.

To reflect a point in the line y = -2x, we use the matrix:

$$T = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

Apply to (x, y) we get: $(x', y') = \left(-\frac{3x}{5} - \frac{4y}{5}, \frac{3y}{5} - \frac{4x}{5}\right)$.

So
$$x = \frac{1}{5}(-3x' - 4y')$$
 and $y = \frac{1}{5}(-4x' + 3y')$.

So $x = \frac{1}{5}(-3x' - 4y')$ and $y = \frac{1}{5}(-4x' + 3y')$. Put these values into y = 2x - 3 with the dashes removed to get the reflection:

$$y = \frac{1}{11}(-15 - 2x)$$

Section B: Supplementary Questions

<u>Sub-Section [4.3.1]</u>: Transformations of Graphs

State the transformation matrix for dilation by a factor of 6 from the y -axis and a reflection around the x -axis.
The combined transformation matrix is:
$T=egin{bmatrix} 6 & 0 \ 0 & -1 \end{bmatrix}$
L* 7J
Find the image of (x, y) under the transformation described in part a
Find the image of (x,y) under the transformation described in part a .
Find the image of (x,y) under the transformation described in part a.
Find the image of (x,y) under the transformation described in part a .
The image of the point (x, y) is:

c. Consider an exponential function $j(x) = e^x$. The transformed graph is:

 $j_t(x) = -e^{\frac{x}{6}}$

Question 15

a. State the transformation matrix for dilation by a factor of 3 parallel to the *x*-axis and a reflection around the *y*-axis.

The combined transformation matrix is:

$$T = egin{bmatrix} -3 & 0 \ 0 & 1 \end{bmatrix}$$

b. Find the image of (x, y) under the transformation described in **part a.**

The image of the point (x, y) is: $\begin{bmatrix} -3x \\ y \end{bmatrix}$

c. Consider a trigonometric function $n(x) = \cos(x)$. The transformed graph is:

The graph of $n'(x) = \cos(-\frac{1}{3}x)$.

Question 16

a. State the transformation matrix for dilation by a factor of 2 from the x-axis and a reflection around the y-axis.

b. Find the image of (x, y) under the transformation described in **part a.**

 $\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Consider a function $f(x) = 2 \sin^{-1}(x - 1) + \frac{\pi}{6}$.

It is known that all the points of f(x) have been transformed by the transformation matrix found in **part a.**

c. Find the transformed graph.

 $4\sin^{-1}(-x-1) + \frac{\pi}{3}\text{ or } -4\sin^{-1}(x+1) + \frac{\pi}{3}$

Sub-Section [4.3.2]: Rotations Around Points

$\mathbf{\alpha}$	4.	4 =
Qu	estion	17

 $\boldsymbol{a.}$ State the transformation matrix for a rotation around the origin 45° counterclockwise.

The transformation matrix is:

$$R = egin{bmatrix} \cos(45^\circ) & -\sin(45^\circ) \ \sin(45^\circ) & \cos(45^\circ) \end{bmatrix} = egin{bmatrix} rac{\sqrt{2}}{2} & -rac{\sqrt{2}}{2} \ rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \end{bmatrix}$$

b. Hence, find the image of (3,3) after it has been rotated around the origin 45° counterclockwise.

_____The image of the point (3,3) is:

$$R \cdot egin{bmatrix} 3 \ 3 \end{bmatrix} = egin{bmatrix} 0 \ 3\sqrt{2} \end{bmatrix}$$

Question 18

a. State the transformation matrix for a rotation around the origin 60° clockwise.

_____ The transformation matrix is:

$$R = egin{bmatrix} \cos(-60^\circ) & \sin(-60^\circ) \ -\sin(-60^\circ) & \cos(-60^\circ) \end{bmatrix} = egin{bmatrix} rac{1}{2} & rac{\sqrt{3}}{2} \ -rac{\sqrt{3}}{2} & rac{1}{2} \end{bmatrix}$$

b. Hence, find the image of (0, 2) after it has been rotated around the origin 60° clockwise.

The image of the point (0,2) is:

$$R \cdot egin{bmatrix} 0 \ 2 \end{bmatrix} = egin{bmatrix} \sqrt{3} \ 1 \end{bmatrix}$$

Question 19

State the image of (0,0) after the rotation around the point (3,-2) 120° anticlockwise.

$$f(120) \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ -2 \end{pmatrix} + \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$\begin{bmatrix} \frac{9}{2} - \sqrt{3} \\ \frac{-3 \cdot \sqrt{3}}{2} - 3 \end{bmatrix}$$

Question 20

State the image of (1, -5) after the rotation around the point (-2, 1) 90° clockwise.

$$f(-90) \cdot \begin{pmatrix} 1 \\ -5 \end{pmatrix} - \begin{pmatrix} -2 \\ 1 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

Sub-Section [4.3.3]: Reflections in Lines

Question 21

Reflect the point (-1,3) across the line $y = \sqrt{3}x$.

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = t \left(\sqrt{3} \right)$

$$x' = \frac{3 \cdot \sqrt{3}}{2} + \frac{1}{2}$$
$$y' = \frac{3}{2} - \frac{\sqrt{3}}{2}$$

Question 22

Reflect the point (0,1) across the line y = 5x.

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = t(5) \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

 $x' = \frac{5}{13}$ $y' = \frac{12}{13}$

Question 23

State the image of (-1, 1) after the reflection around the line y = x - 4.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = t(1) \cdot \begin{pmatrix} -1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ -4 \end{pmatrix} + \begin{bmatrix} 0 \\ -4 \end{bmatrix}$$

Question 24

State the image of (3, 2) after the reflection around the line $y = -2\left(x + \frac{1}{2}\right)$.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = t(-2) \cdot \begin{pmatrix} 3 \\ 2 \end{bmatrix} - \begin{bmatrix} 0 \\ -1 \end{pmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} x' = \frac{-21}{5} \\ y' = \frac{-8}{5} \end{bmatrix}$$

Ω_1	uestioi	n 25
VI	uesuoi	u ⊿∋

a. Find the equation of the line y = 3x - 1 after it undergoes a reflection in the line y = -2x.

 $y = -\frac{1}{3}(x+1)$

b. Find the equation of the line y = x + 4 after it undergoes a reflection in the line y = 3x + 2.

y = 12 - 7x

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

