ONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Transformations I [4.2]

Workbook

Outline:

Linear Transformations

- Pg 2-12
- Introduction to Linear Transformations
- Unit Square
- Determinant and Area of Unit Square

Types of Transformations

Pg 13-33

- Dilations
- Char
- Reflections around x and y-axis
- Projections
- Translations

Inverse Transformations

- Pg 34-41
- Reversing Transformations
- Validity of Inverse Transformations

Composite Transformations

Pg 42-44

Composite Transformations

Learning Objectives:

- SM12 [4.2.2] Dilations, Reflections, Translations, Shears and Projections
- SM12 [4.2.3] Inverse Transformations
- □ SM12 [4.2.4] Composite Transformations

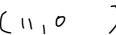
Section A: Linear Transformations

Sub-Section: Introduction to Linear Transformations

Context: Linear Transformations

- Consider a point (1, 4).
- What would the new x-value be if it's triple the current x-values plus double the current y-value?

- What would the new y-value be if it's double the current x-values minus half the current y-value?



Linear Transformations

$$(x,y) \rightarrow (ax + by, cx + dy) = (\underline{x', y'})$$

- The (x', y') represents the new points and is called an <u>image</u>.
- Original point (x, y) is called the pe-mage

Space for Personal Notes

Question 1

Find the image of the point (2, 1) under the transformation with rule $(x, y) \rightarrow (3x - 5y, 2x - 4y)$.

$$(x,y) = (6-5, 4-4)$$

= $(1,0)$

REMINDER: Matrix Multiplication.

$$A \times B = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \times 3 + (-1) \times 1 \\ 1 \times 3 + 2 \times 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

Number of Columns of 1^{st} Matrix = Number of Rows of 2^{nd}

The answer will always be a matrix.

How can we represent the transformation using matrices?



Consider the following matrix multiplication:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Evaluate the answer for the above multiplication!

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = Transformation Matrix$

Question 2 Walkthrough.

Consider a point (x, y) which is represented by the matrix $\begin{bmatrix} x \\ y \end{bmatrix}$.

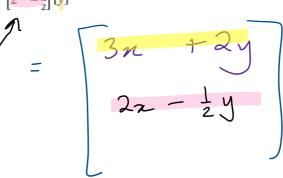
Find the image given by
$$\begin{bmatrix} -1 & 3 \\ 5 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
.

Space for Personal Notes

Question 3

Consider a point (x, y) which is represented by the matrix $\begin{bmatrix} x \\ y \end{bmatrix}$.

Find the transformed point given by $\begin{bmatrix} 3 & 2 \\ 2 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.



NOTE: $\begin{bmatrix} 3 & 2 \\ 2 & -\frac{1}{2} \end{bmatrix}$ is called a transformation matrix.

Discussion: Considering the answer from above, why is it called linear transformation?

ax+by
Linear equation

Space for Personal Notes

CONTOUREDUCATION

VCE Specialist Mathematics ½

Question 4

a. Find the matrix of the linear transformation with the rule $(x, y) \rightarrow (x - 2y, 3x + y)$.

b. Use the matrix to find the image of the point (2, 3) under the transformation.

$$\begin{bmatrix} 1 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2-6 \\ 6+3 \end{bmatrix} \begin{bmatrix} -4 \\ 9 \end{bmatrix}$$

c. The image of a point (c, d) under the linear transformation is (2, 3). Find c and d.

$$\begin{bmatrix} 1 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} c-2d = 2 \\ 3c+d = 3 \end{bmatrix}$$

$$\begin{bmatrix} c-2d \\ 3c+d = 3 \end{bmatrix}$$

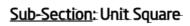
$$\begin{bmatrix} c - 2d \\ 3c+d = 3 \end{bmatrix}$$

$$\begin{bmatrix} c - 2d \\ 3c+d = 3 \end{bmatrix}$$

$$\begin{bmatrix} c - 2d \\ 3c+d = 3 \end{bmatrix}$$

Space for Personal Notes

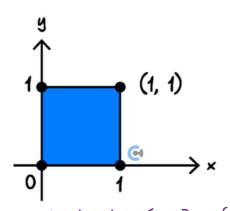
SM12 [4.2] - Transformations I - Workbook



What would be the best way to visualise the linear transformations?

Transforming the Unit Square

Unit Square has a side length of 1.



- ▶ Unit square has a coordinate (0,0)(1,0)(0,1).
- \blacktriangleright Apply the transformation to (0,0), (1,0), (0,1) and (1,1) to see the effect of the transformations.

NOTE: We use unit squares to visualise how the transformation affects different points.

Discussion: Does it have to be a square then?

Question 5 Walkthrough.

A linear transformation is represented by the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$.

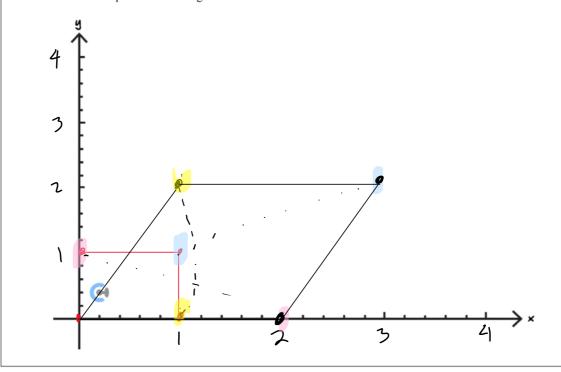
a. Find the image of the points of the unit square (0,0), (1,0), (0,1) and (1,1) under this transformation and write the image points as column vectors.

$$\begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

b. Sketch the unit square and its image on the axes below.



NOTE: Unit square simply helps us to understand how the transformation affects the points.

Discussion: How could we have done the linear transformations for (0,0), (1,0), (0,1) and (1,1) using one matrix multiplication? $\int_{\mathcal{U}} \mathcal{F} \ d\mathcal{U} \ \mathcal{F}$ where \mathcal{F} one matrix \mathcal{F}

$$\begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 2 & 0 & 2 \end{bmatrix}$$

Space for Personal Notes

Sub-Section: Determinant and Area of Unit Square

REMINDER: Determinant of a 2 × 2 Matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

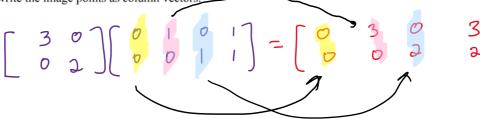
$$\det(A) = ad - bc$$

Space for Personal Notes

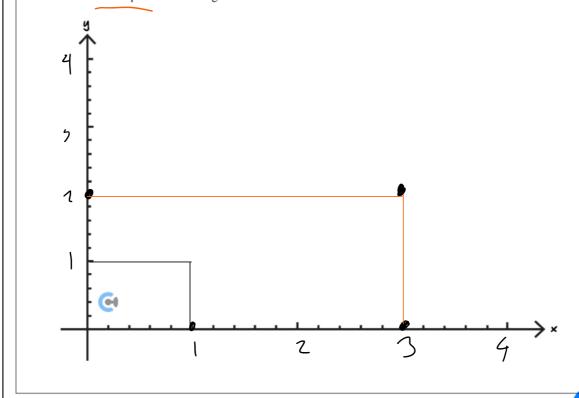
Question 6 Walkthrough.

A linear transformation is represented by the transformation matrix $A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$.

a. Find the image of the points of the unit square (0,0), (1,0), (0,1) and (1,1) under this transformation and write the image points as column vectors.



b. Sketch the unit square and its image on the axes below.



c. State the area of the unit square and its image.

d. Find the determinant of the transformation matrix $A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$.

$$\begin{vmatrix} 3 \times 2 \\ 0 = 6 - 0 \end{vmatrix}$$

<u>Discussion:</u> What do you notice? What does the determinant of the transformation matrix tell us?

Area of transformed unit square -

Determinant of Transformation Matrix

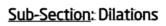
Given that A = Transformation matrix.

Area of the image = $|\det(A)| \times Area$ of the pre image

Determinant could be <u>negative</u> hence we put the modulus.

Space for Personal Notes

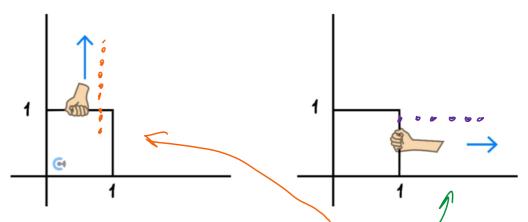
Section B: Types of Transformations



What do dilations do?

Exploration: Understanding Dilations

Let's say Krish is bored that the unit square has a length of 1, and decides to stretch the unit square from the x and the y-axis.

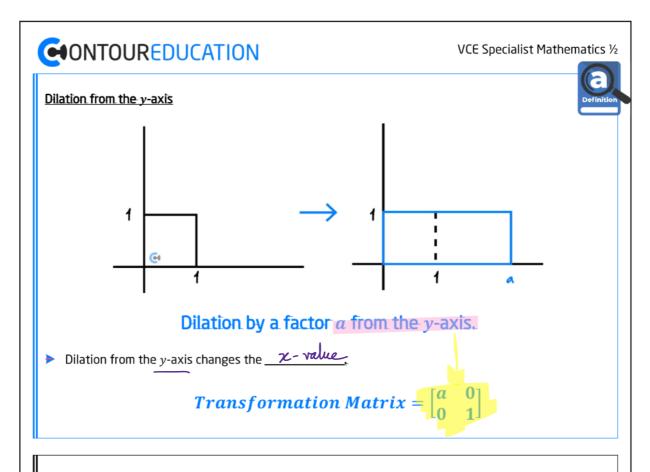


- From the diagram above, state which one is dilation from the x-axis and y-axis.
- \blacktriangleright Which variable (x or y) does the dilation from the x-axis change?

y-value

Which variable (x or y) does the dilation from the y-axis change?

Space for Personal Notes

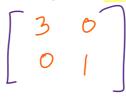


Space for Personal Notes

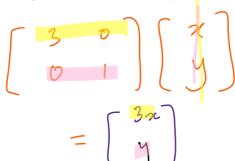
VCE Specialist Mathematics $\frac{1}{2}$

Question 7

a. State the transformation matrix for dilation by a factor of 3 from the *y*-axis.



b. Apply the transformation matrix found in **part a.** to the coordinate (x, y).

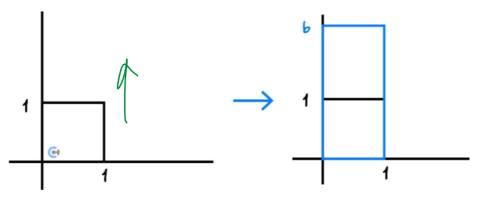


NOTE: The x-value is tripled for dilation by a factor 3 from the y-axis.

Space for Personal Notes

VCE Specialist Mathematics $\frac{1}{2}$

Dilation from the x-axis



Dilation by a factor b from the x-axis.

Dilation from the *x*-axis changes the $\frac{y-value}{y}$

Transformation Matrix = $\begin{bmatrix} 1 & 0 \\ 0 & b \end{bmatrix}$

Space for Personal Notes

Question 8

a. State the transformation matrix for dilation by factor 2 from the x-axis.

b. Apply the transformation matrix found in **part a.** to the coordinate (x, y).

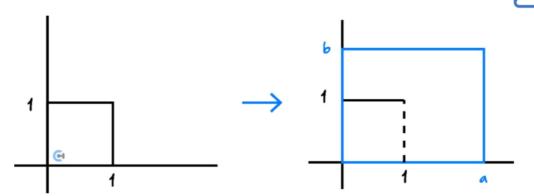
NOTE: The y-value is doubled for dilation by a factor 2 from the x-axis.

Space for Personal Notes

SM12 [4.2] - Transformations I - Workbook

Let's combine.

Dilation and its Transformation Matrix



Dilation by a factor a from the y-axis.

Dilation by a factor b from the x-axis.

Transformation Matrix = $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$

<u>Discussion:</u> Find the determinant of $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$. <u>Does it make sense?</u>

$$\left| \begin{array}{c} |a \times b| = ab - 0 \\ = ab \end{array} \right|$$

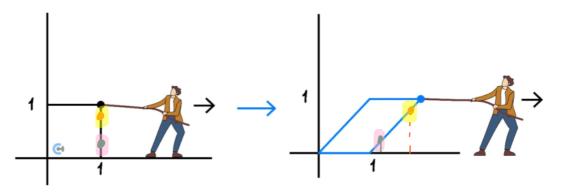
Space for Personal Notes

Area of new unage

What about "shear"?

Exploration: Understanding Shear Parallel to the x-axis

- Let's bring Krish back again.
- \blacktriangleright He ties a rope on the point (1,1) of the "malleable" unit square and pulls it parallel to x-axis.



Which variable (x or y) would change?

x - value

Would all the points move the same distance parallel to the x-axis?

Va

Does the point move more if they are further from the x-axis or closer?

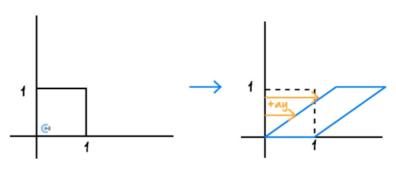
[Further

Therefore, what does the change in *x*-value correspond to?

y-value

NOTE: The x-value changes with respect to how big their y-value is.

Shear Parallel to the x-axis



Shear of a factor α parallel to the x-axis.

Shear parallel to x-axis changes the $\frac{\chi$ -value by a multiple of y-value

Transformation Matrix =
$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$

Space for Personal Notes

Question 9

a. State the transformation matrix for the shear of a factor 3 parallel to the x-axis.

$$\begin{bmatrix} 1 & 3 \\ 6 & 1 \end{bmatrix}$$

b. Apply the transformation matrix found in **part a.** to the coordinate (x, y).

$$\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ y \end{bmatrix} = \begin{bmatrix} \chi + 3y \\ y \end{bmatrix}$$

NOTE: The *x*-value is added by tripling the *y*-value.

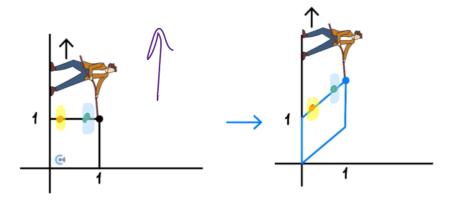
Space for Personal Notes

SM12 [4.2] - Transformations I - Workbook

What about in the direction of the y-axis?

Exploration: Understanding Shear Parallel to the y-axis

- Let's bring Krish back again × 2.
- ▶ He ties a rope on the point (1,1) of the "malleable" unit square and pulls it parallel to y-axis.



Which variable (x or y) would change?

change? y - value

Would all the points move the same distance parallel to the y-axis?

No

Does the point move more if they are further from the y-axis or closer?

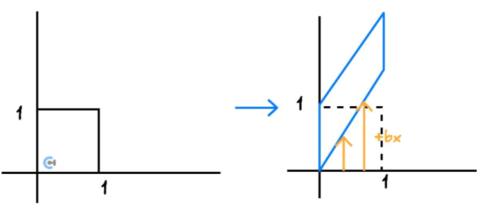
Further

Therefore, what does the change in *y*-value correspond to?

x-value

NOTE: The *y*-value changes with respect to how big their *x*-value is.

Shear Parallel to the y-axis



Shear of a factor b parallel to the y-axis.

Shear parallel to y-axis changes the y-value by a multiple of x-value

Transformation Matrix =
$$\begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}$$

Space for Personal Notes

Question 10

a. State the transformation matrix for the shear of a factor 2 parallel to the y-axis.

 $\left[\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right]$

b. Apply the transformation matrix found in **part a.** to the coordinate (x, y).

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{pmatrix} \chi \\ Y \end{pmatrix} = \begin{pmatrix} \chi \\ 2\chi + Y \end{pmatrix}$$

NOTE: The y-value is added by doubling the x-value.

Space for Personal Notes

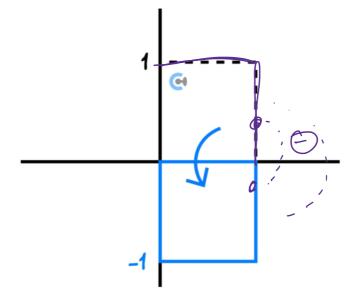
SM12 [4.2] - Transformations I - Workbook

Sub-Section: Reflections around x and y-axis

Discussion: If you reflect something around the x-axis, what would happen? What about the

y-axis?

Reflection around x-axis



Reflection in the *x*-axis.

Reflection in the x-axis changes the y-value

 $x \neq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Transformation Matrix \neq

Space for Personal Notes

Now around y -axis.

Reflection around y-axis

Reflection in the y-axis

Reflection in the y-axis changes the χ -value

$$Transformation\ Matrix = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Space for Personal Notes

Question 11

a. State the transformation matrix for reflection in both x and y-axis.

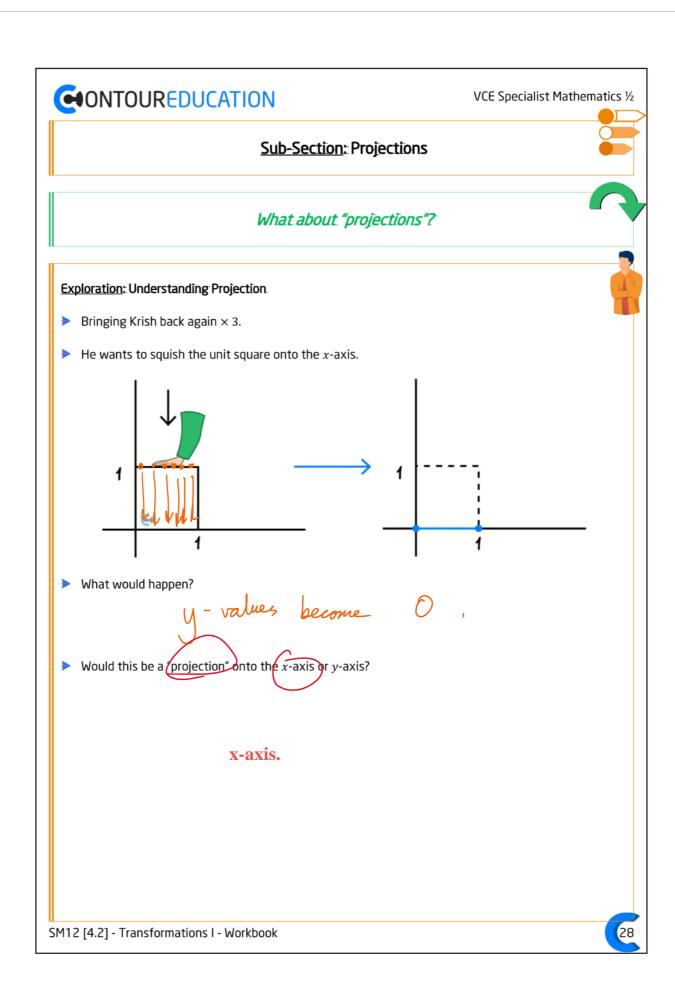
b. Apply the transformation matrix found in **part a.** to the coordinate (x, y).

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \chi \\ y \end{bmatrix} = \begin{bmatrix} -\chi \\ -y \end{bmatrix}$$

<u>Discussion:</u> Consider the size of the determinant of the reflection transformation matrix. Does it make sense?

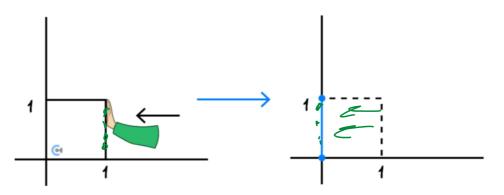
Space for Personal Notes

Reflections don't change area!



CONTOUREDUCATION

VCE Specialist Mathematics ½



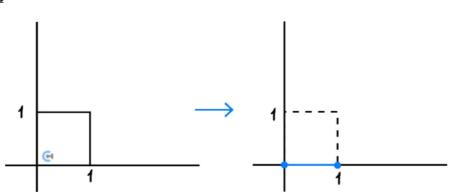
- How about now?
- What would happen?

x-values become 0

Would this be a "projection" onto the x-axis of y-axis?

y-axis.

Projections

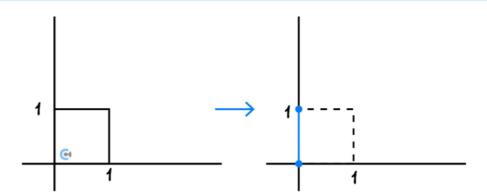


Projection onto the x-axis:

The <u>V-valus</u> becomes 0.

Transformation Matrix = $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

SM12 [4.2] - Transformations I - Workbook



Projection onto the y-axis:

The <u>Nother</u> becomes 0.

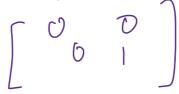
$$Transformation\ Matrix = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Space for Personal Notes

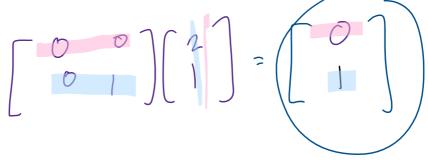
SM12 [4.2] - Transformations I - Workbook

Question 12

a. State the transformation matrix for projection onto *y*-axis.



b. Find the image of (2,1) after the transformation projection onto y-axis.



NOTE: Projection onto *y*-axis only keeps the *y*-value.

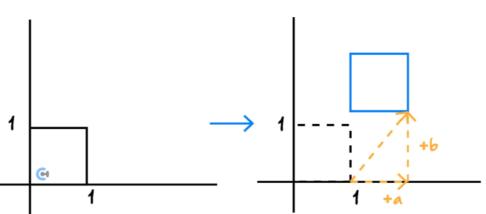
Discussion: Consider the determinant of the projection transformation matrix. Does it make sense?

YES, because the area becomes 0. Hence, the determinant should always be 0.

Space for Personal Notes

Now translations!

<u>Translation</u>



> Translation simply moves the point.

Translation a units in the positive direction of the x-axis.

Translation b units in the positive direction of the y-axis.

 \blacktriangleright We simply add/subtract the translation value to x and y.

Transformation:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

Space for Personal Notes

Question 13

Consider the point (4, 1).

The point has been translated 2 units in the positive direction of the x-axis and translated 3 units in the negative direction of the y-axis.

Find the image using matrices.

$$\begin{bmatrix} 4 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

Space for Personal Notes

SM12 [4.2] - Transformations I - Workbook

Section C: Inverse Transformations

Sub-Section: Reversing Transformations

REMINDER: Inverse of a 2 × 2 Matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

- Inverse only exists for a square matrix.
- Matrix that has an inverse is called cweffle.

Space for Personal Notes

CONTOUREDUCATION

VCE Specialist Mathematics ½

Ouestion 14

Consider a transformation matrix given by $A = \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}$.

a. Find the image of (2,3) after applying transformation A.

$$\begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 3 & 3 \end{bmatrix}$$

b. Find the inverse matrix of *A*.

$$A^{-1} = \frac{1}{-2-3} \begin{bmatrix} -1 & -1 \\ -3 & 2 \end{bmatrix}$$

$$= -\frac{1}{5} \begin{bmatrix} -1 & -1 \\ -3 & 2 \end{bmatrix}$$

c. Find the image of (7,3) after applying transformation A^{-1} .

$$-\frac{1}{5}\begin{bmatrix} -1 & -1 \\ -3 & 2 \end{bmatrix}\begin{bmatrix} 7 \\ 3 \end{bmatrix} = -\frac{1}{5}\begin{bmatrix} -10 \\ -15 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

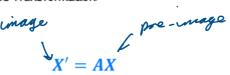
TIP: Take the factor out and multiply it afterwards.

Discussion: From the previous question, what do we do to reverse a transformation?

Let's also prove this using matrix algebral

Exploration: Algebraic Proof of Inverse Transformation

Consider:



Multiply A^{-1} on both sides.

NOTE: We always multiply the matrices on the LHS.

What does AA^{-1} equal to?

$$A^{-1} \times = A^{-1} A \times A^{-1} \times = X$$

$$A^{-1} \times = X$$

- What does IA always equal to?
- We can multiply the inverse transformation matrix by the image to go back to the pre-image.

Inverse Transformation

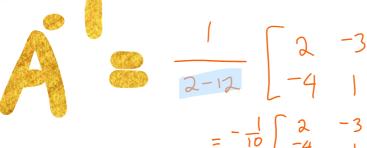
If
$$X' = AX$$
 then $A^{-1}X' = X$.

Multiply the inverse transformation matrix to the image to go back to the pre-image.

Question 15

A point (x, y) has been transformed by $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$ and the image was given by (2, 1).

a. Find A^{-1} .



b. Hence, find the point (x, y).

$$\begin{bmatrix} 7 \\ y \end{bmatrix} = -\frac{1}{10} \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 7 \\ 10 \end{bmatrix}$$

$$= -\frac{1}{10} \begin{bmatrix} -7 \\ -7 \end{bmatrix} = \begin{bmatrix} -\frac{1}{10} \\ \frac{7}{10} \end{bmatrix}$$

Space for Personal Notes

SM12 [4.2] - Transformations I - Workbook

37

Sub-Section: Validity of Inverse Transformations

Discussion: Do all matrices have an inverse?

REMINDER: Determinant of a 2 × 2 Matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\det(A) = ad - bc$$

- If the determinant equals ______, then A does not have an inverse.
- A is not we tible

<u>Discussion:</u> If a transformation matrix A does not have an inverse A^{-1} , how can we reverse the transformation under A?

Space for Personal Notes

Why can't some transformations be reversed?

SM12 [4.2] - Transformations I - Workbook

38

Question 16

Consider a transformation matrix given by $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$.

a. Find the $\det(A)$.

$$det(A) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

b. Find the image of (3, 4) under the transformation given by A.

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{bmatrix} 7 \\ 14 \end{bmatrix}$$

c. Find the image of (2,5) under the transformation given by A.

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 7 \\ 14 \end{bmatrix}$$

Space for Personal Notes

CONTOUREDUCATION

image: (7, 14)?

VCE Specialist Mathematics ½

Discussion: Looking at the question above, how can we reverse the transformation from the

Non-Invertible Matrix and Inverse Transformations

$$X' = AX$$

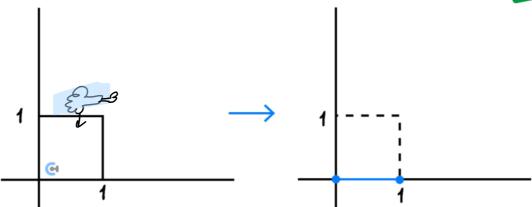
If det(A) = 0, then X cannot be solved as A^{-1} is undefined.

The original point cannot be solved if the inverse matrix does not exist.

We can't

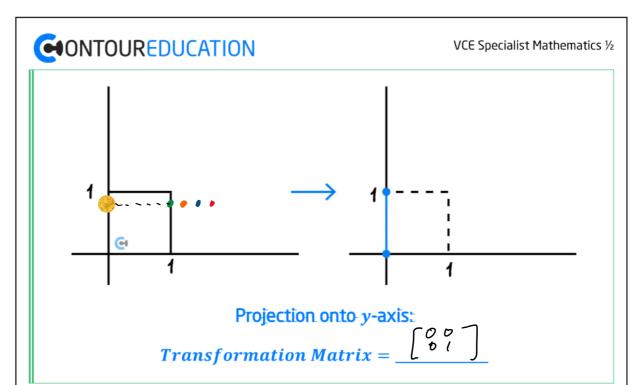
- The transformation cannot be reversed when $det = \bigcirc$
- It happens as the image can be achieved from multiple pre-images.

Active Recall: Projection



Projection onto x-axis:

Transformation $Matrix = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$



<u>Discussion:</u> Consider the determinant of the projection transformation matrix. Can any projection transformation be reversed? Does that make sense?

det = 0 -3 Can !+ reverse fransformations

Space for Personal Notes

Section D: Composite Transformations

Sub-Section: Composite Transformations

Discussion: How do we do multiple transformations?

Composite Transformations

For transformation under A and B respectively,

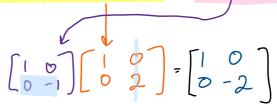
$$X' = BAX$$

Always multiply the next transformation matrix on the $\frac{\text{LHS}}{\text{L}}$.

Space for Personal Notes

Question 17 Walkthrough.

a. State the transformation matrix for dilation by factor 2 from the x-axis and reflection in the x-axis.



b. Apply the transformation matrix found in **part a.** to the coordinate (3, 1).

$$\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

Space for Personal Notes

Your turn!

Question 18

a. State the transformation matrix for dilation by factor 3 from the x-axis, shear of factor 3 parallel to the y-axis and reflection in the y-axis.

the y-axis.

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 3 & 3 \end{bmatrix}$$

b. Hence, apply the transformation "dilation by factor 3 from the x-axis, shear of factor 3 parallel to the y-axis and reflection in the y-axis" to the coordinate (-2,5).

$$\begin{bmatrix} -1 & 0 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$$

Space for Personal Notes

SM12 [4.2] - Transformations I - Workbook

44

Contour Check

□ Learning Objective: [4.2.1] – Using matrices for linear transformations

Key Takeaways

Linear Transformations:

$$(x,y) \rightarrow (ax + by, cx + dy) = (x', y')$$

- The (x', y') represents the new points and is called an <u>maye</u>.
- Original point (x, y) is called the **pre-unage**.
- Matrices for Linear Transformations:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{Transformation}{matrix}$$

- Determinant of Transformation Matrix:
 - \bigcirc Given that A = Transformation matrix.

 $\textit{Area of the image} = \big| \det(A) \big| \times \textit{Area of the pre image}$

O Determinant could be <u>Negative</u> hence we put the modulus.

□ Learning Objective: [4.2.2] – Dilations, reflections, translations, shears and projections

Key Takeaways

Dilation from the y-axis:

Dilation by a factor a from the y-axis.

O Dilation from the *y*-axis changes the χ -value

Transformation Matrix = $\begin{bmatrix} a & o \\ o & 1 \end{bmatrix}$

Dilation from the x-axis:

Dilation by a factor b from the x-axis.

O Dilation from the x-axis changes the y-value $Transformation Matrix = \begin{bmatrix} 1 & 0 \\ 0 & b \end{bmatrix}$

■ Dilation and its Transformation Matrix:

Dilation by a factor a from the y-axis.

Dilation by a factor b from the x-axis.

Transformation Matrix = $\begin{bmatrix} a & b \\ b & b \end{bmatrix}$

Shear Parallel to the x-axis:

Shear of a factor a parallel to the x-axis.

O Shear parallel to x-axis changes the χ -value by a multiple of χ -value χ -value χ -value

Shear Parallel to the y-axis:

Shear of a factor b parallel to the y-axis.

O Shear parallel to y-axis changes the y-value by a multiple of x-value

Transformation Matrix = (h)

Reflection around x-axis:

Reflection in the x-axis:

- O Reflection in the x-axis changes the y-value $Transformation Matrix = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- Reflection around y-axis:

Reflection in the y-axis:

O Reflection in the y-axis changes the χ -value

Transformation Matrix = $\int_{0}^{1} 0$

Projections:

Projection onto the x-axis:

Transformation Matrix $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Projection onto the y-axis:

The 2-value becomes 0.

- Translation:
 - Translation simply moves the point.

Translation a units in the positive direction of the x-axis.

Translation b units in the positive direction of the y-axis.

 \bigcirc We simply add/subtract the translation value to x and y.

Transformation:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

<u>Learning Objective</u>: [4.2.3] – Inverse transformations

Key Takeaways

Inverse Transformation:

If
$$X' = AX$$
 then $X = \frac{A^{-1}X^{-1}}{X}$.

O Multiply the inverse transformation matrix to the image to go back to the

Non-Invertible Matrix and Inverse Transformations:

$$X' = AX$$

if det(A) = 0, then X cannot be solved as A^{-1} is undefined.

- The original point cannot be solved if the inverse matrix does not exist.
- The transformation cannot be <u>Neversed</u> when det = 0
- It happens as the image can be achieved from multiple pre-images.

□ <u>Learning Objective</u>: [4.2.4] – Composite transformations

Key Takeaways

☐ For transformation under *A* and *B* respectively:

$$X' = BAX$$

□ Always multiply the next transformation matrix on the ∠ ⊬ 5 .

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

