# **CONTOUREDUCATION**

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

## VCE Specialist Mathematics ½ Transformations I [4.2]

Workbook

#### **Outline:**

#### **Linear Transformations**

Pg 2-12

- Introduction to Linear Transformations
- Unit Square
- Determinant and Area of Unit Square

#### **Types of Transformations**

Pg 13-33

- Dilations
- Shear
- Reflections around x and y-axis
- Projections
- Translations

#### **Inverse Transformations**

Pg 34-41

- Reversing Transformations
- Validity of Inverse Transformations

#### **Composite Transformations**

Pg 42-44

Composite Transformations

#### **Learning Objectives:**

SM12 [4.2.1] - Using Matrices for Linear Transformations

G

- SM12 [4.2.2] Dilations, Reflections, Translations, Shears and Projections
- □ SM12 [4.2.3] Inverse Transformations
- SM12 [4.2.4] Composite Transformations





#### **Section A: Linear Transformations**

#### **Sub-Section**: Introduction to Linear Transformations



#### **Context:** Linear Transformations

1

- Consider a point (1, 4).
- $\blacktriangleright$  What would the new x-value be if it's triple the current x-values plus double the current y-value?
- $\blacktriangleright$  What would the new y-value be if it's double the current x-values minus half the current y-value?
- ► Hence, what would the new point be?

## Definition

#### **Linear Transformations**

$$(x,y) \rightarrow (ax + by, cx + dy) = (x', y')$$

- The (x', y') represents the new points and is called an \_\_\_\_\_\_.
- ightharpoonup Original point (x,y) is called the \_\_\_\_\_\_.



#### **Question 1**

Find the image of the point (2, 1) under the transformation with rule  $(x, y) \rightarrow (3x - 5y, 2x - 4y)$ .

### REMINDER: Matrix Multiplication

$$A \times B = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \times 3 + (-1) \times 1 \\ 1 \times 3 + 2 \times 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

Number of Columns of  $1^{st}$  Matrix = Number of Rows of  $2^{nd}$ 

The answer will always be a matrix.

#### How can we represent the transformation using matrices?

#### **Exploration**: Matrices for Linear Transformations



$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Evaluate the answer for the above multiplication!

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = Transformation Matrix$$



#### Question 2 Walkthrough.

Consider a point (x, y) which is represented by the matrix  $\begin{bmatrix} x \\ y \end{bmatrix}$ .

Find the image given by  $\begin{bmatrix} -1 & 3 \\ 5 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ .

**Question 3** 

Consider a point (x, y) which is represented by the matrix  $\begin{bmatrix} x \\ y \end{bmatrix}$ .

Find the transformed point given by  $\begin{bmatrix} 3 & 2 \\ 2 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ .

**NOTE:**  $\begin{bmatrix} 3 & 2 \\ 2 & -\frac{1}{2} \end{bmatrix}$  is called a transformation matrix.



<u>Discussion:</u> Considering the answer from above, why is it called linear transformation?



### **C**ONTOUREDUCATION

#### **Question 4**

- **a.** Find the matrix of the linear transformation with the rule  $(x, y) \rightarrow (x 2y, 3x + y)$ .
- **b.** Use the matrix to find the image of the point (2, 3) under the transformation.

**c.** The image of a point (c, d) under the linear transformation is (2, 3). Find c and d.



#### **Sub-Section**: Unit Square



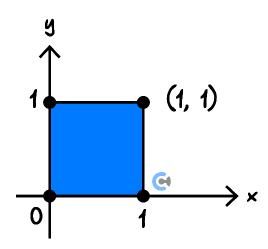
What would be the best way to visualise the linear transformations?



#### **Transforming the Unit Square**



Unit Square has a side length of 1.



- Unit square has a coordinate \_\_\_\_\_\_
- $\blacktriangleright$  Apply the transformation to (0,0), (1,0), (0,1) and (1,1) to see the effect of the transformations.

**NOTE:** We use unit squares to visualise how the transformation affects different points.



<u>Discussion:</u> Does it have to be a square then?



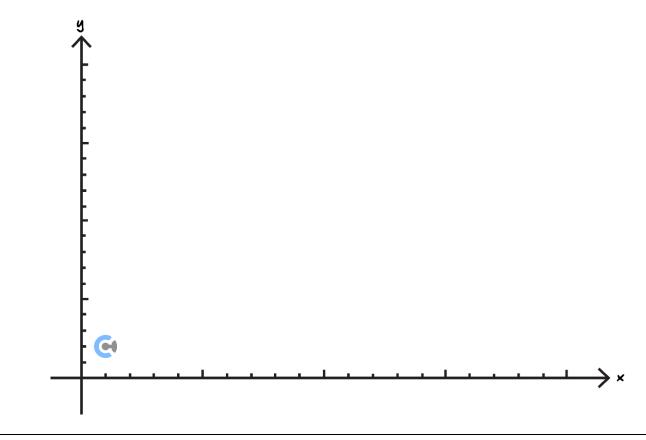


Question 5 Walkthrough.

A linear transformation is represented by the matrix  $A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$ .

**a.** Find the image of the points of the unit square (0,0), (1,0), (0,1) and (1,1) under this transformation and write the image points as column vectors.

**b.** Sketch the unit square and its image on the axes below.





**NOTE**: Unit square simply helps us to understand how the transformation affects the points.



<u>Discussion:</u> How could we have done the linear transformations for (0,0), (1,0), (0,1) and (1,1) using one matrix multiplication?





#### **Sub-Section**: Determinant and Area of Unit Square



REMINDER: Determinant of a  $2 \times 2$  Matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\det(A) = ad - bc$$

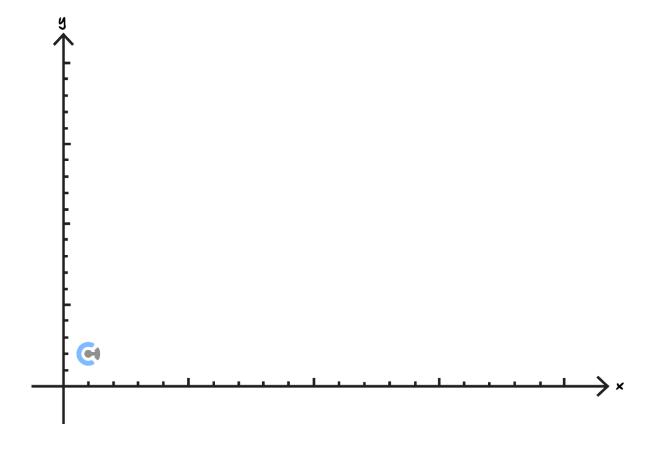


Question 6 Walkthrough.

A linear transformation is represented by the transformation matrix  $A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ .

**a.** Find the image of the points of the unit square (0,0), (1,0), (0,1) and (1,1) under this transformation and write the image points as column vectors.

**b.** Sketch the unit square and its image on the axes below.





- **c.** State the area of the unit square and its image.
- **d.** Find the determinant of the transformation matrix  $A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ .

<u>Discussion:</u> What do you notice? What does the determinant of the transformation matrix tell us?



#### **Determinant of Transformation Matrix**



Given that A = Transformation matrix.

Area of the image =  $|\det(A)| \times Area$  of the pre image

Determinant could be \_\_\_\_\_ hence we put the modulus.



#### **Section B:** Types of Transformations

#### **Sub-Section**: Dilations

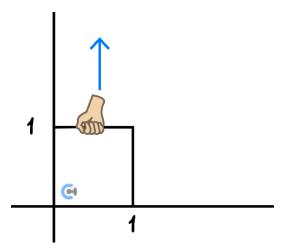


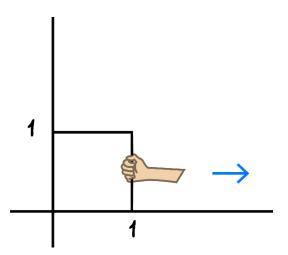
#### What do dilations do?

## R

#### **Exploration:** Understanding Dilations

Let's say Krish is bored that the unit square has a length of 1, and decides to stretch the unit square from the x and the y-axis.



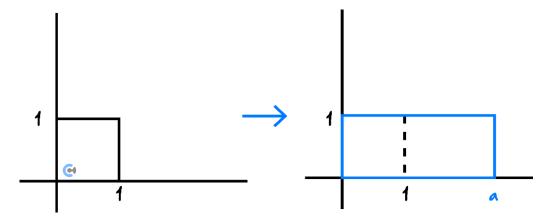


- From the diagram above, state which one is dilation from the x-axis and y-axis.
- $\blacktriangleright$  Which variable (x or y) does the dilation from the x-axis change?
- $\blacktriangleright$  Which variable (x or y) does the dilation from the y-axis change?



Dilation from the y-axis





Dilation by a factor a from the y-axis.

Dilation from the *y*-axis changes the \_\_\_\_\_\_\_.

Transformation Matrix = 
$$\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$$



| Ougstion | 7 |
|----------|---|
| Question | 1 |

**a.** State the transformation matrix for dilation by a factor of 3 from the *y*-axis.

**b.** Apply the transformation matrix found in **part a.** to the coordinate (x, y).

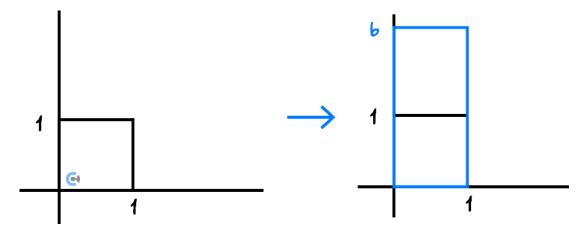
**NOTE:** The x-value is tripled for dilation by a factor 3 from the y-axis.





Dilation from the x-axis





Dilation by a factor b from the x-axis.

Dilation from the *x*-axis changes the \_\_\_\_\_.

Transformation Matrix = 
$$\begin{bmatrix} 1 & 0 \\ 0 & b \end{bmatrix}$$



#### **Question 8**

**a.** State the transformation matrix for dilation by factor 2 from the x-axis.

**b.** Apply the transformation matrix found in **part a.** to the coordinate (x, y).

**NOTE**: The y-value is doubled for dilation by a factor 2 from the x-axis.

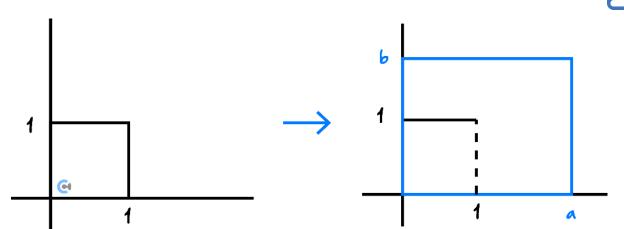




#### Let's combine.



**Dilation and its Transformation Matrix** 



Dilation by a factor a from the y-axis.

Dilation by a factor b from the x-axis.

Transformation Matrix =  $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ 

<u>Discussion:</u> Find the determinant of  $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ . Does it make sense?





#### **Sub-Section**: Shear



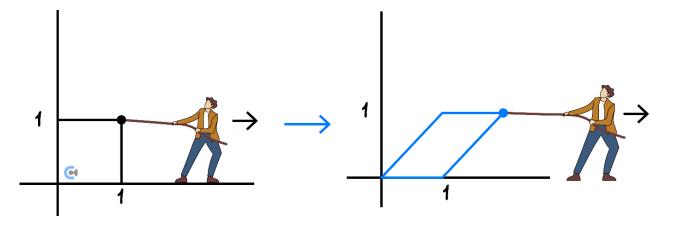
#### What about "shear"?



#### **Exploration**: Understanding Shear Parallel to the *x*-axis



- Let's bring Krish back again.
- $\blacktriangleright$  He ties a rope on the point (1,1) of the "malleable" unit square and pulls it parallel to x-axis.



- $\blacktriangleright$  Which variable (x or y) would change?
- Would all the points move the same distance parallel to the x-axis?
- Does the point move more if they are further from the x-axis or closer?
- Therefore, what does the change in x-value correspond to?

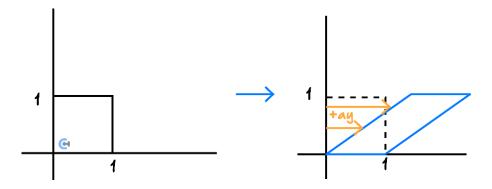


**NOTE:** The x-value changes with respect to how big their y-value is.



Shear Parallel to the x-axis





Shear of a factor a parallel to the x-axis.

 $\blacktriangleright$  Shear parallel to x-axis changes the \_\_\_\_\_\_.

Transformation Matrix = 
$$\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$$



#### **Question 9**

**a.** State the transformation matrix for the shear of a factor 3 parallel to the x-axis.

**b.** Apply the transformation matrix found in **part a.** to the coordinate (x, y).

**NOTE:** The x-value is added by tripling the y-value.



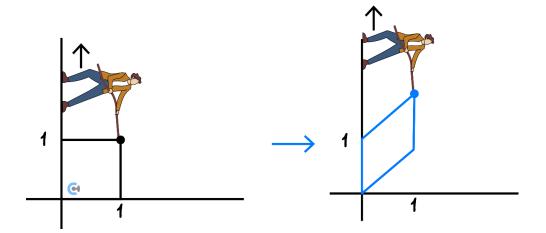


#### What about in the direction of the y-axis?



#### Exploration: Understanding Shear Parallel to the y-axis

- Let's bring Krish back again × 2.
- $\blacktriangleright$  He ties a rope on the point (1,1) of the "malleable" unit square and pulls it parallel to y-axis.



- $\blacktriangleright$  Which variable (x or y) would change?
- Would all the points move the same distance parallel to the y-axis?
- Does the point move more if they are further from the y-axis or closer?
- Therefore, what does the change in y-value correspond to?

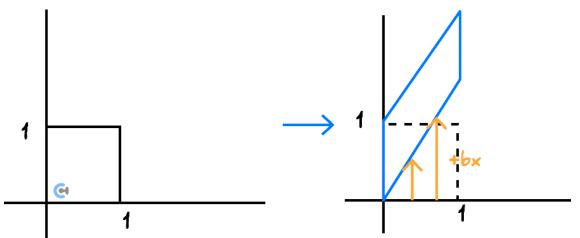
**NOTE:** The y-value changes with respect to how big their x-value is.





Shear Parallel to the y-axis





Shear of a factor b parallel to the y-axis.

➤ Shear parallel to *y*-axis changes the \_\_\_\_\_\_\_.

Transformation Matrix = 
$$\begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}$$



#### **Question 10**

**a.** State the transformation matrix for the shear of a factor 2 parallel to the *y*-axis.

**b.** Apply the transformation matrix found in **part a.** to the coordinate (x, y).

**NOTE:** The y-value is added by doubling the x-value.





#### Sub-Section: Reflections around x and y-axis

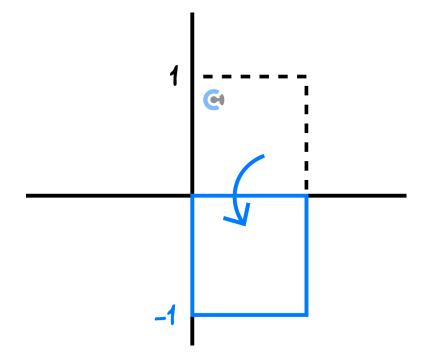


<u>Discussion:</u> If you reflect something around the x-axis, what would happen? What about the y-axis?



#### Reflection around x-axis





Reflection in the *x*-axis.

Reflection in the x-axis changes the \_\_\_\_\_\_.

$$Transformation\ Matrix = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

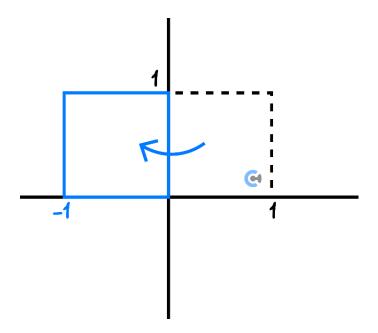






Reflection around y-axis





#### Reflection in the y-axis

Reflection in the y-axis changes the \_\_\_\_\_\_.

Transformation Matrix = 
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$



| <b>Question</b> | 1 | 1 |
|-----------------|---|---|
| Question        | 1 | J |

**a.** State the transformation matrix for reflection in both x and y-axis.

**b.** Apply the transformation matrix found in **part a.** to the coordinate (x, y).

<u>Discussion:</u> Consider the size of the determinant of the reflection transformation matrix. Does it make sense?





#### **Sub-Section:** Projections

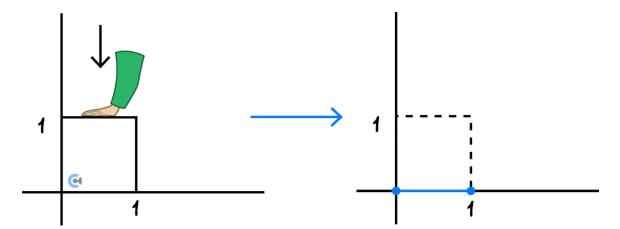


#### What about "projections"?



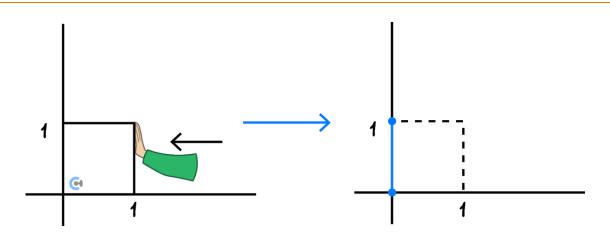
#### **Exploration**: Understanding Projection

- Bringing Krish back again × 3.
- $\blacktriangleright$  He wants to squish the unit square onto the x-axis.



- What would happen?
- Would this be a "projection" onto the x-axis or y-axis?

### **C**ONTOUREDUCATION

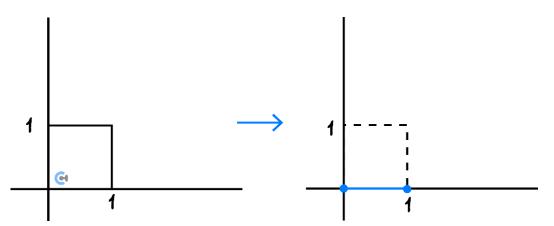


- ➤ How about now?
- What would happen?

▶ Would this be a "projection" onto the *x*-axis or *y*-axis?

#### **Projections**



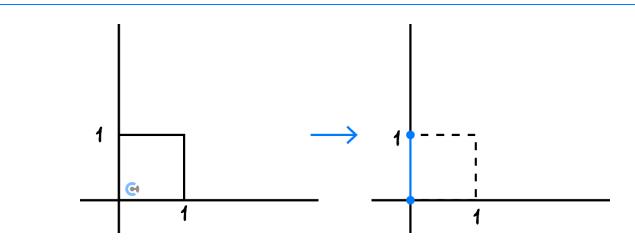


Projection onto the *x*-axis:

The \_\_\_\_\_\_ becomes 0.

Transformation Matrix = 
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

### **C**ONTOUREDUCATION



Projection onto the *y*-axis:

➤ The \_\_\_\_\_\_ becomes 0.

Transformation Matrix = 
$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$



#### **Question 12**

**a.** State the transformation matrix for projection onto y-axis.

**b.** Find the image of (2, 1) after the transformation projection onto y-axis.

**NOTE:** Projection onto y-axis only keeps the y-value.



<u>Discussion:</u> Consider the determinant of the projection transformation matrix. Does it make sense?





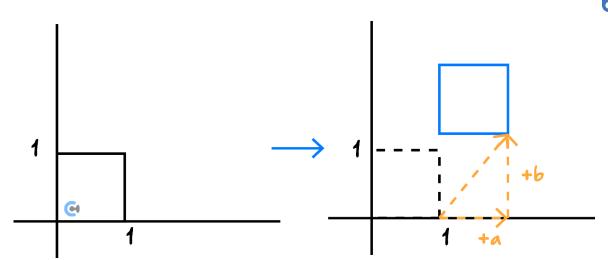
#### **Sub-Section:** Translations



#### Now translations!



**Translation** 



> Translation simply moves the point.

Translation a units in the positive direction of the x-axis.

Translation b units in the positive direction of the y-axis.

 $\blacktriangleright$  We simply add/subtract the translation value to x and y.

Transformation: 
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$



| Question 13                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Consider the point (4, 1).                                                                                                                          |
| The point has been translated 2 units in the positive direction of the $x$ -axis and translated 3 units in the negative direction of the $y$ -axis. |
| Find the image using matrices.                                                                                                                      |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |



#### **Section C:** Inverse Transformations

#### **Sub-Section:** Reversing Transformations

REMINDER: Inverse of a  $2 \times 2$  Matrix



$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

- Inverse only exists for a square matrix.
- Matrix that has an inverse is called \_\_\_\_\_\_.



#### **Question 14**

Consider a transformation matrix given by  $A = \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}$ .

**a.** Find the image of (2,3) after applying transformation A.

**b.** Find the inverse matrix of *A*.

**c.** Find the image of (7,3) after applying transformation  $A^{-1}$ .

**TIP:** Take the factor out and multiply it afterwards.



Discussion: From the previous question, what do we do to reverse a transformation?





#### Let's also prove this using matrix algebra!



#### **Exploration**: Algebraic Proof of Inverse Transformation

Consider:

$$X' = AX$$

ightharpoonup Multiply  $A^{-1}$  on both sides.

NOTE: We always multiply the matrices on the LHS.

 $\blacktriangleright$  What does  $AA^{-1}$  equal to?

What does IA always equal to?

We can multiply the inverse transformation matrix by the image to go back to the pre-image.

#### **Inverse Transformation**



If 
$$X' = AX$$
 then  $A^{-1}X' = X$ .

Multiply the inverse transformation matrix to the image to go back to the pre-image.

## **C**ONTOUREDUCATION

#### **Question 15**

A point (x, y) has been transformed by  $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$  and the image was given by (2, 1).

**a.** Find  $A^{-1}$ .

**b.** Hence, find the point (x, y).

## **Sub-Section**: Validity of Inverse Transformations

**Discussion:** Do all matrices have an inverse?



REMINDER: Determinant of a  $2 \times 2$  Matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\det(A) = ad - bc$$

- If the determinant equals \_\_\_\_\_\_, then A does not have an inverse.
- ➤ A is not \_\_\_\_\_\_.

<u>Discussion:</u> If a transformation matrix A does not have an inverse  $A^{-1}$ , how can we reverse the transformation under A?



Space for Personal Notes

Why can't some transformations be reversed?



## **C**ONTOUREDUCATION

#### **Question 16**

Consider a transformation matrix given by  $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ .

**a.** Find the det (A).

**b.** Find the image of (3,4) under the transformation given by A.

**c.** Find the image of (2,5) under the transformation given by A.



<u>Discussion:</u> Looking at the question above, how can we reverse the transformation from the image: (7,14)?



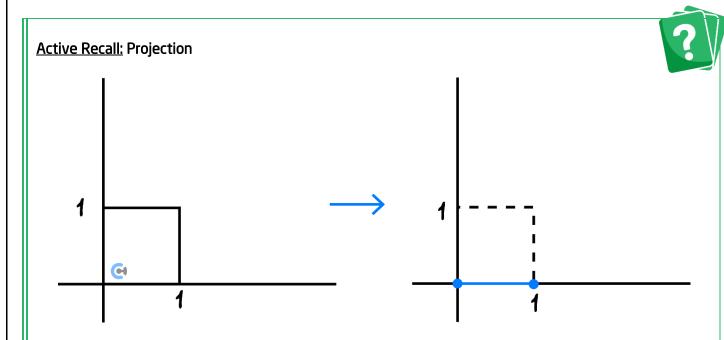
#### Non-Invertible Matrix and Inverse Transformations



$$X' = AX$$

If det(A) = 0, then X cannot be solved as  $A^{-1}$  is undefined.

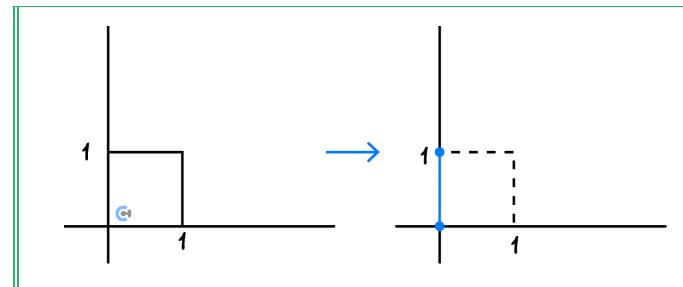
- The original point cannot be solved if the inverse matrix does not exist.
- The transformation cannot be \_\_\_\_\_when \_\_\_\_\_
- It happens as the image can be achieved from multiple pre-images.



Projection onto *x*-axis:

Transformation Matrix =\_\_\_\_\_





Projection onto *y*-axis:

Transformation Matrix =

<u>Discussion:</u> Consider the determinant of the projection transformation matrix. Can any projection transformation be reversed? Does that make sense?





## Section D: Composite Transformations

## **Sub-Section**: Composite Transformations



**Discussion:** How do we do multiple transformations?



### **Composite Transformations**



For transformation under A and B respectively,

$$X' = BAX$$

Always multiply the next transformation matrix on the \_\_\_\_\_.





#### Question 17 Walkthrough.

**a.** State the transformation matrix for dilation by factor 2 from the x-axis and reflection in the x-axis.

**b.** Apply the transformation matrix found in **part a.** to the coordinate (3, 1).

#### **Space for Personal Notes**

### Your turn!





| <b>Question</b> | 18 |
|-----------------|----|
| Oucsuon         | 10 |

**a.** State the transformation matrix for dilation by factor 3 from the x-axis, shear of factor 3 parallel to the y-axis and reflection in the y-axis.

**b.** Hence, apply the transformation "dilation by factor 3 from the x-axis, shear of factor 3 parallel to the y-axis and reflection in the y-axis" to the coordinate (-2,5).





### **Contour Check**

□ <u>Learning Objective</u>: [4.2.1] - Using matrices for linear transformations

**Key Takeaways** 

Linear Transformations:

$$(x, y) \rightarrow (ax + by, cx + dy) = (x', y')$$

- O The (x', y') represents the new points and is called an \_\_\_\_\_\_.
- Original point (x, y) is called the \_\_\_\_\_.
- Matrices for Linear Transformations:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} =$$
\_\_\_\_\_

- Determinant of Transformation Matrix:
  - $\bigcirc$  Given that A = Transformation matrix.

Area of the image =  $|\det(A)| \times Area$  of the pre image

O Determinant could be \_\_\_\_\_\_ hence we put the modulus.



| <ul> <li><u>Learning Objective</u>: [4.2.2] - Dilations, reflections, translations, shears and projections</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------|
| Key Takeaways                                                                                                         |
| □ Dilation from the <i>y</i> -axis:                                                                                   |
| Dilation by a factor $a$ from the $y$ -axis.                                                                          |
| igorplus Dilation from the $y$ -axis changes the                                                                      |
| Transformation Matrix =                                                                                               |
| $\square$ Dilation from the $x$ -axis:                                                                                |
| Dilation by a factor $b$ from the $x$ -axis.                                                                          |
| $igcolon 	ext{Dilation from the } x	ext{-axis changes the } \underline{\hspace{1cm}}$                                 |
| Transformation Matrix =                                                                                               |
| □ Dilation and its Transformation Matrix:                                                                             |
| Dilation by a factor $a$ from the $y$ -axis.                                                                          |
| Dilation by a factor $b$ from the $x$ -axis.                                                                          |
| Transformation Matrix =                                                                                               |
| ☐ Shear Parallel to the <i>x</i> -axis:                                                                               |
| Shear of a factor $a$ parallel to the $x$ -axis.                                                                      |
| $\circ$ Shear parallel to $x$ -axis changes the                                                                       |
| Transformation Matrix =                                                                                               |



| ☐ Shear Parallel to the <i>y</i> -axis:              |
|------------------------------------------------------|
| Shear of a factor $b$ parallel to the $y$ -axis.     |
| • Shear parallel to <i>y</i> -axis changes the       |
| Transformation Matrix =                              |
| Reflection around <i>x</i> -axis:                    |
| Reflection in the x-axis:                            |
| $\circ$ Reflection in the $x$ -axis changes the      |
| Transformation Matrix =                              |
| Reflection around <i>y</i> -axis:                    |
| Reflection in the y-axis:                            |
| lacktriangle Reflection in the $y$ -axis changes the |
| Transformation Matrix =                              |
| Projections:                                         |
| Projection onto the x-axis:                          |
| O The becomes 0.                                     |
| Transformation Matrix =                              |
| Projection onto the y-axis:                          |
| O The becomes 0.                                     |
| Transformation Matrix =                              |
|                                                      |



Translation:

Translation simply moves the point.

Translation a units in the positive direction of the x-axis.

Translation b units in the positive direction of the y-axis.

 $\circ$  We simply add/subtract the translation value to x and y.

Transformation: 
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

□ <u>Learning Objective</u>: [4.2.3] - Inverse transformations

**Key Takeaways** 

Inverse Transformation:

If 
$$X' = AX$$
 then  $X =$ 

- Multiply the inverse transformation matrix to the image to go back to the \_\_\_\_\_\_.
- Non-Invertible Matrix and Inverse Transformations:

$$X' = AX$$

if det(A) = 0, then X cannot be solved as  $A^{-1}$  is undefined.

- The original point cannot be solved if the inverse matrix does not exist.
- The transformation cannot be \_\_\_\_\_\_when \_\_\_\_\_.
- O It happens as the image can be achieved from multiple pre-images.



## □ <u>Learning Objective</u>: [4.2.4] - Composite transformations

**Key Takeaways** 

☐ For transformation under *A* and *B* respectively:

$$X' = BAX$$

☐ Always multiply the next transformation matrix on the \_\_\_\_\_.



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

## VCE Specialist Mathematics ½

## Free 1-on-1 Consults

#### What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

# G

## **Booking Link**

bit.ly/contour-specialist-consult-2025

