

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Matrices [4.1]

Test

23 Marks. 1 Minute Reading. 18 Minutes Writing.

Results:

<u> </u>	,	
Test Questions	/ 23	

Section A: Test Questions (23 Marks)

Question 1 (3 marks)

Tick whether the following statements are **true** or **false**.

	Statement	True	False
a.	Only square matrices have a chance to be invertible.		
b.	A $m \times n$ matrix can be multiplied by a $l \times n$ matrix, $n \neq l$ since they both have the same number of columns.		
c.	For any two square matrices with the same dimensions, $A + B = B + A$ and $AB = BA$.		
d.	If a square matrix A is invertible, then there exists another square matrix B such that $AB = BA$.		
e.	You can only take the determinant of a square matrix.		
f.	If A is invertible, and it is known that $AB = C$, then $B = A^{-1}C$ given that the dimensions of A, B and C allow for these multiplications to exist.		

Space f	or Perso	nal Not	es
---------	----------	---------	----

Question 2 (3 marks)

If
$$A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & -4 \\ -2 & 8 \end{bmatrix}$, find the matrix X such that $\frac{2}{5}A^T + \frac{3}{2}X = B$.

Question 3 (3 marks)				
If $A = [$	$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ and $A + A^T = I$, then find the value of $\alpha, \alpha \in [0, \pi]$.			

Space for Personal Notes	

Question 4 (2 marks)

$$C = \begin{bmatrix} 1 & 6 \\ -2 & -2 \end{bmatrix} \text{ and } D = \begin{bmatrix} -5 & 10 \\ -4 & 8 \end{bmatrix}.$$

For which matrix, C or D, does an inverse matrix **not** exist? Why?

Question 5 (3 marks)		
Consider		
	$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 4 \\ -1 & -1 & 3 \end{bmatrix}$	
Find $det(A)$.		

ONTOUREDUCATION

Question 6 (5 marks) $\text{If } A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}, \text{ then prove that } A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix} \text{ for any } n \in \mathbb{N}.$

Hint: Use an induction proof.

CHONTOUREDUCATION

Question 7 (4 marks)

Solve the following systems of linear equations using matrices.

a. x + 2y = 24x - 2y = 5 (2 marks)

b. 2x + 2y = 2 3x + 3y = 3 (2 marks)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

