Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Advanced Trigonometric Functions Exam Skills [3.5]

Workbook

Outline:

<u>Recap</u>	Pg 2-14		
Warmup Test	Pg 15-17	Exam 1 Questions	Pg 29-34
Circular Functions Exam Skills ➤ Simplifying Composite Inverse	Pg 18-28	Tech Active Exam Skills	Pg 35-41
Trigonometric Functions Simplifying $a\cos(x) + b\sin(x)$ Sums and Products of $\cos(x)$ and si	n(<i>x</i>)	Exam 2 Questions	Pg 42-47

Learning Objectives:

□ SM12 [3.5.1] -Simplify the Composition of Inverse Trigonometric Functions

- **SM12 [3.5.2]** -Simplify $a\cos(x) + b\sin(x)$
- SM12 [3.5.3] -Apply Product to Sum and Sum to Product Identities to Simplify Trigonometric Expressions

Section A: Recap

If you were here last week, skip to section B - warmup test.

Definition

Reciprocal Trigonometric Functions

The reciprocal of sine is cosecant:

$$\mathbf{cosec}(x) = \frac{1}{\sin(x)}$$

The reciprocal of cosine is secant:

$$\sec(x) = \frac{1}{\cos(x)}$$

The reciprocal of **tangent** is **cotangent**:

$$\cot(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}$$

Question 1

Evaluate the following.

a. $\sec\left(-\frac{\pi}{3}\right)$

b. $\csc\left(\frac{2\pi}{3}\right)$

 $\mathbf{c.} \quad \cot\left(-\frac{5\pi}{6}\right)$

Trigonometric Identities

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

$$1 + \tan^2(\theta) = \sec^2(\theta)$$

$$1 + \cot^2(\theta) = \csc^2(\theta)$$

Question 2

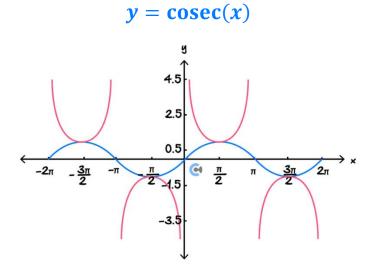
Given that $\sec(x) = -4$ and $x \in \left[\frac{\pi}{2}, \pi\right]$, find $\csc(x)$ and $\tan(x)$. Show your working.

Properties of Reciprocal Graphs

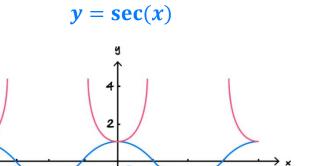
Feature on $y = f(x)$	Feature on $y = \frac{1}{f(x)}$	
x-intercept	Vertical asymptote	
Positive y-values	Positive y-values	
Negative y-values	Negative y-values	
Increasing	Decreasing	
Decreasing	Increasing	

The graphs intersect only when f(x) = 1 or f(x) = -1.

Graphing Reciprocal Trigonometric Functions

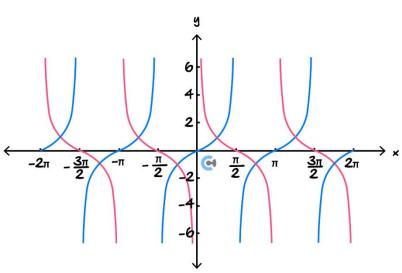


- Maximal Domain: $R \setminus \{x : \sin(x) = 0\}$.
- Range: $(-\infty, -1] \cup [1, \infty)$.



- Maximal Domain: $R \setminus \{x : \cos(x) = 0\}$.
- ► Range: $(-\infty, -1] \cup [1, \infty)$.

$$y = \cot(x)$$



- Maximal Domain: $R \setminus \{x : \tan(x) = 0\}$.
- Range: R.

Steps for Sketching Reciprocal Trig Graphs

Find an asymptote.

$$equate Angle = 0 for cosec and cot graphs$$

equate
$$Angle = \frac{\pi}{2}$$
 for sec graphs

Find and mark all other asymptotes in the domain.

$$Add/Subtract \frac{\pi}{n}$$
 from first asymptotes

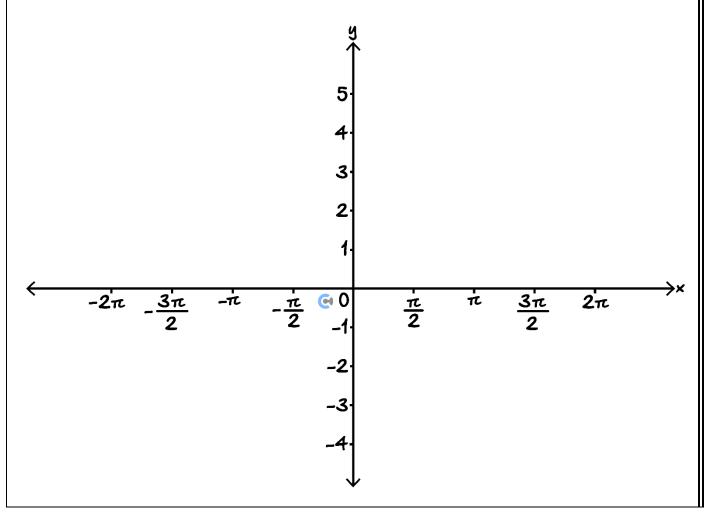
Plot a point in between the two asymptotes.

Midpoint = *Inflection Point* for cot graphs

- Solve for axes intercept (if applicable).
- Repeat the shape over the entire domain.
 - For cosec and sec graphs, the "U" shapes alternate between asymptotes, while cot graphs look the same between asymptotes.

Question 3

Sketch the graph of $y = -\frac{1}{2} \operatorname{cosec}(x) + 1$ for $-2\pi \le x \le 2\pi$, labelling all stationary points, axes-intercepts and asymptotes.



Compound Angle Formula

sin compound angle formulae.

$$\sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

cos compound angle formulae.

$$\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

tan compound angle formulae.

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x - y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

Question 4

Using the compound angle formula, evaluate $\cos\left(\frac{5\pi}{12}\right)$.

Definition

Double Angle Formulae

sin double angle formula.

$$\sin(2x) = 2\sin(x)\cos(x)$$

cos double angle formula.

$$cos(2x) = cos2(x) - sin2(x)$$
$$= 2 cos2(x) - 1$$
$$= 1 - 2 sin2(x)$$

tan double angle formula.

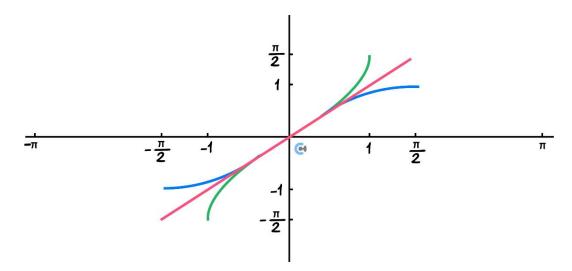
$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

Question 5

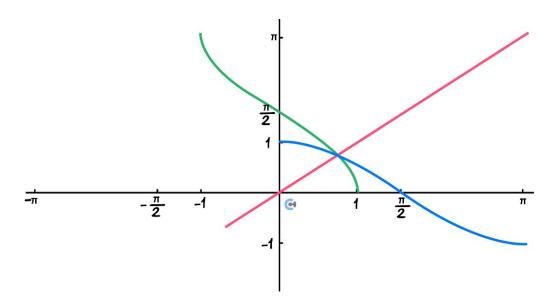
Find $\cos(2t)$, where $\sin(t) = -\frac{1}{8}$.

Inverse Trig Functions

 \rightarrow $\sin^{-1}(x)$

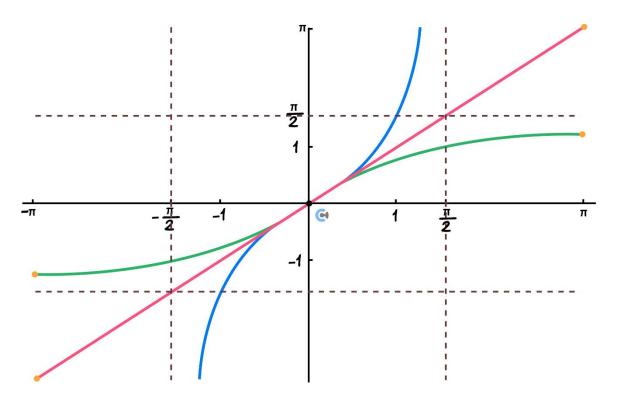


- Geometric The domain of the arcsin function = Range of $\sin = [-1,1]$.
- The range = Domain of restricted $\sin = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.
- \rightarrow cos⁻¹(x)



- The domain of the \arccos function = Range of $\cos = [-1,1]$.
- The range = Domain of restricted $\cos = [0, \pi]$.

 \rightarrow tan⁻¹(x)



- The domain of the $\arctan function = Range of tan = R$.
- The range = Domain of restricted $\tan = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

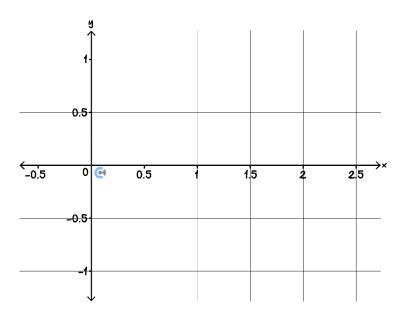
Steps for Graphing General Arcsin and Arccos

- 1. Find the implied domain of the function.
 - Restrict **inside** to be within [-1, 1].
- 2. Find and plot the endpoints of the graph by substituting the ends of the domain.
- 3. Find and plot the midpoint of the ends. (It is an inflection point.)
- 4. Find and plot the axes intercepts if required.
- 5. Using the previously plotted points as a guide, sketch a "cubic-like" shape.

Question 6

Following the steps above, sketch:

$$y = \frac{1}{2}\arccos(1-x) - \frac{\pi}{4}$$



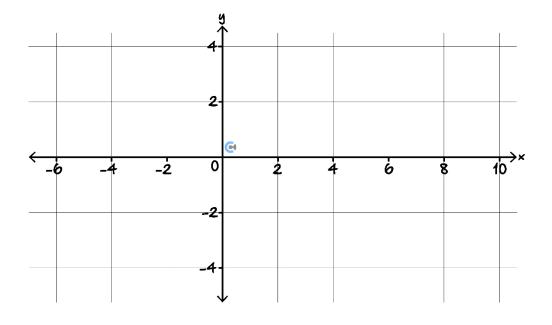
Steps for Graphing General Graphs of arctan

- 1. Find the horizontal asymptotes of the graph and plot them.
 - You can find the asymptotes by finding the range of the arctan function.
 - **6** E.g., the range of $\arctan(x) + \pi$ is $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$, so the asymptotes are $y = \frac{\pi}{2}$ and $y = \frac{3\pi}{2}$.
- **2.** Inflection point is given by (h, k).
 - The x-value can be found by making inside = 0.
 - The y-value can be found by averaging the asymptotic values (midpoint).
- 3. Find and plot the axes intercepts if required.
- 4. Using the previously plotted points and asymptotes as a guide, sketch the function.

Question 7

Following the steps above, sketch:

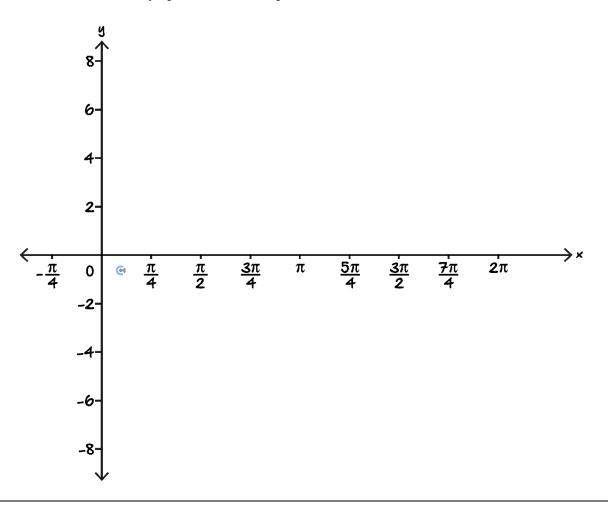
$$y = \arctan(x - \sqrt{3}) - \frac{\pi}{3}$$



Section B: Warmup Test (15 Marks)

Question 8 (8 marks)			
Consider the function $f(x) = \sec\left(2x - \frac{\pi}{4}\right) - 2$ for $x \in [0, 2\pi]$.			
a.	Find the equation(s) of any asymptotes of the function. (2 marks)		
b.	Find all solutions to the equation $f(x) = 0$ for $x \in [0, 2\pi]$. (3 marks)		

c. Hence, sketch the graph of f on the axes below, labelling all axes intercepts, turning points and endpoints with their coordinates, and all asymptotes with their equations. (3 marks)



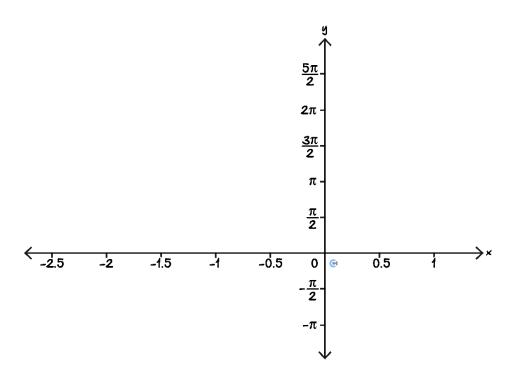
Question 9 (3 marks)

Prove the identity

$$\frac{\sin(x)}{1+\cos(x)} = \tan\left(\frac{x}{2}\right)$$

Question 10 (4 marks)

Sketch the graph of $y = 2 \arccos\left(x + \frac{1}{2}\right) - \frac{\pi}{2}$ over its maximal domain, labelling endpoints and axes intercepts with their coordinates.



Section C: Circular Functions Exam Skills

Sub-Section: Simplifying Composite Inverse Trigonometric Functions

Active Recall

?

- The range of $\sin^{-1}(x)$ is _____.
- ightharpoonup The range of $\cos^{-1}(x)$ is ______.

Question 11 Walkthrough.

Simplify the function $f(x) = \cos(\arcsin(x))$.

NOTE: Inverse trig functions are essentially an angle. Let them equal theta!

ALSO NOTE: Reject by using the range restriction of inverse trigonometric functions.

Your turn!

Question 12

Simplify the function $f(x) = \sin(\arccos(x-2))$.

NOTE: To check this on technology, simply use *texpand/trigexpand*.

Question 13 Tech Active.

Simplify the function $f(x) = \cos(\arcsin(x-4))$.

$$\cos(\sin^{-1}(x-4))$$
 $\sqrt{-x^2+8\cdot x-15}$

Out[142]=
$$\sqrt{1 - (4 - x)^2}$$

$$\cos(\sin^{-1}(x-4))$$

$$\sqrt{-x^2+8\cdot x-15}$$

Sub-Section: Simplifying $a\cos(x) + b\sin(x)$

Exploration: Simplifying $a\cos(x) + b\sin(x)$

Take a look at this expression!

$$\sqrt{3}\sin(x) + 1\cos(x)$$

- How could we simplify this into one trigonometric function?
- Let's first find the Pythagoras of the coefficients of sin and cos.

We will call this our _____

$$r = \sqrt{\left(\sqrt{3}\right)^2 + (1)^2} =$$

Now factorise the radius out from the previous equation.

$$\sqrt{3}\sin(x) + 1\cos(x) = \underline{\hspace{1cm}}$$

What do you notice about the coefficient of sin and cos now?

They are ______ of sin and cos!

Let's replace $\frac{\sqrt{3}}{2}$ as $\cos\left(\frac{\pi}{3}\right)$ and $\frac{1}{2}$ as $\sin\left(\frac{\pi}{3}\right)$

NOTE: It is important that we use the same angle. We will see why!

$$\sqrt{3}\sin(x) + 1\cos(x) = 2(\underline{\qquad}\sin(x) + \underline{\qquad}\cos(x))$$

What formula can we use to simplify this now? Compound angle formula!

$$\sqrt{3}\sin(x) + 1\cos(x) = 2$$

Can you see why using the same angle in the above step is important?

Discussion: Was this the only way to simplify?

Definition

Simplifying the sum of trig functions:

Step 1: Find the radius by taking the two coefficients:

$$r = \sqrt{a^2 + b^2}$$

- Step 2: Factor the expression by the radius.
- > Step 3: Replace the coefficients with $\cos(a)$ and $\sin(a)$. Remember to use the same angles.
- > Step 4: Use the compound angle formula to express in terms of a single trigonometric function.

$$a\cos(x) + b\sin(x) = r\cos(x - \alpha)$$

$$a\cos(x) - b\sin(x) = r\cos(x + \alpha)$$

$$a\sin(x) + b\cos(x) = r\sin(x + \alpha)$$

$$a\sin(x) - b\cos(x) = r\sin(x - \alpha)$$

where
$$r = \sqrt{a^2 + b^2}$$
 and $\alpha = \tan^{-1}\left(\frac{b}{a}\right)$

Question 14 Walkthrough.

Simplify the expression sin(x) + cos(x).

<u>Active Recall:</u> Simplifying the sum of trig functions:

Step 1: Find the radius by taking the two coefficients:

$$r = \sqrt{a^2 + b^2}$$

- Step 2: Factor the expression by the______.
- \blacktriangleright Step 3: Replace the coefficients with $\cos(a)$ and $\sin(a)$. Remember to use the same angles.
- > Step 4: Use ______ formula to express in terms of a single trigonometric function.

$$a\cos(x) + b\sin(x) =$$

$$a\cos(x) - b\sin(x) =$$

$$a\sin(x) + b\cos(x) =$$

$$a\sin(x) - b\cos(x) =$$

where
$$r = \sqrt{a^2 + b^2}$$
 and $\alpha = \tan^{-1}\left(\frac{b}{a}\right)$

Question 15	
Simplify the expression $\sqrt{3}\sin(x) - \cos(x)$.	

Space for Personal Notes			

<u>Sub-Section</u>: Sums and Products of cos(x) and sin(x)

Product to Sum Identities

$$2\cos(x)\cos(y) = \cos(x-y) + \cos(x+y)$$

$$2\sin(x)\sin(y) = \cos(x-y) - \cos(x+y)$$

$$2\sin(x)\cos(y) = \sin(x+y) + \sin(x-y)$$

How does it work? Let's prove the first one!

Exploration: Proof of Product to Sum Identity

$$\cos(x - y) + \cos(x + y) = 2\cos(x)\cos(y)$$

Consider that cos(a - b) = cos(a) cos(b) + sin(a) sin(b)and cos(a + b) = cos(a) cos(b) - sin(a) sin(b): Compound angle formula

$$\cos(x - y) + \cos(x + y)$$

=

= _____

Question 16 Walkthrough.

Express $2 \sin(3x) \cos(x)$ as a sum or difference:

Active Recall: Product to Sum Identities

$$2\cos(x)\cos(y) = \underline{\hspace{1cm}}$$

$$2\sin(x)\sin(y) = \underline{\hspace{1cm}}$$

$$2\sin(x)\cos(y) = \underline{\hspace{1cm}}$$

Question 17

Express $4\cos(3x)\cos(x)$ as a sum or difference:

Now backwards!

Sum to Product Identities

$$\cos(x) + \cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\cos(x) - \cos(y) = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

$$\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\sin(x) - \sin(y) = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)$$

How does it work? Let's try to prove the first one using product to sum identities.

Exploration Proof of Sum to Product Identity

$$2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) = \cos(x) + \cos(y)$$

Consider that $2\cos(a)\cos(b) = \cos(a-b) + \cos(a+b)$: Product to Sum Identity

$$2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) = \cos(\underline{\qquad} - \underline{\qquad}) + \cos(\underline{\qquad} + \underline{\qquad})$$
$$= \cos(\underline{\qquad}) + \cos(\underline{\qquad})$$

Question 18 Walkthrough.

Express $sin(x + \alpha) - sin(x)$ as a product:

<u>Active Recall:</u> Sum to product identities:

$$\cos(x) + \cos(y) = \underline{\hspace{1cm}}$$

$$\cos(x) - \cos(y) = \underline{\hspace{1cm}}$$

$$\sin(x) + \sin(y) = \underline{\hspace{1cm}}$$

$$\sin(x) - \sin(y) = \underline{\hspace{1cm}}$$

Question 19

Express cos(3x) - cos(x) as a product:

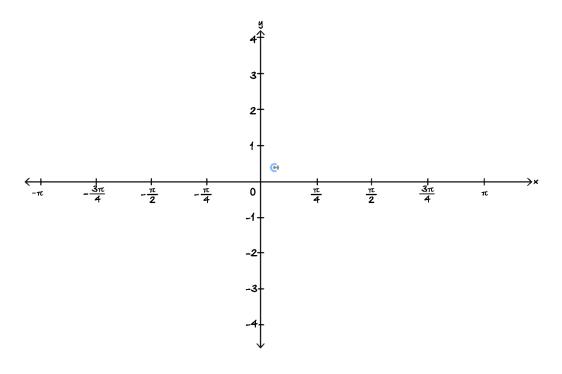
Section D: Exam 1 Questions (21 Marks)

INSTRUCTION: 21 Marks. 25 Minutes Writing.

Qu	estion 20 (4 marks)
Let	$f:[0,2\pi] \to R, f(x) = \cos(4x) + \cos(2x).$
a.	Express f as the product of two trigonometric functions. (1 mark)
b.	Hence, solve the equation $f(x) = 0$ for $x \in [0,2\pi]$. (3 marks)

Question 21 (3 marks)

Sketch the graph of $f(x) = \csc(2x)$ for $x \in [-\pi, \pi]$ on the axes below. Label any asymptotes with their equations and label any turning points with their coordinates.

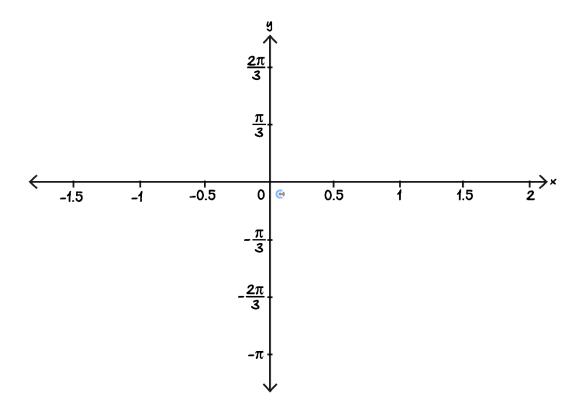


Question 22 (3 marks)					
If $cos(x) = 3 sin(x)$, find the value of $sin(2x)$ where $x \in \left(0, \frac{\pi}{2}\right)$.					
Space for Personal Notes					

Question 23 (5 marks)

Consider the function $f: [-1, 1] \to R, f(x) = \arcsin(x) - \frac{\pi}{2}$.

a. Sketch the graph of y = f(x) on the axes below, labelling the axes intercepts and endpoints with their coordinates. (3 marks)



b. Find the rule and domain of the function $g(x) = \cos(f(x))$. (2 marks)

Question 24 (2 marks)		
Show that $\tan\left(\frac{5\pi}{12}\right) = 2 + \sqrt{3}$.		
	 	· · · · · · · · · · · · · · · · · · ·

	Space for Personal Notes
I	
I	

Question 25 (4 marks)			
Co	nsider the function f with rule $f(x) = \arccos(x^2 - 1)$.		
a.	State the domain of f . (2 marks)		
h	Find the same of f (2 mosts)		
υ.	Find the range of f . (2 marks)		
Sn	ace for Personal Notes		
Jμ	ace for Fersonal Notes		
1			

Section E: Tech Active Exam Skills

<u>Calculator Commands:</u> Finding asymptote of reciprocal trigonometric functions.

- **▶** TI
 - solve(denominator trig(...) = 0, x) | domain restriction
 - (is under control equal.
- Casio
 - solve(denominator trig(...) = 0, x) | domain restriction
 - | is under maths 3.

Mathematica

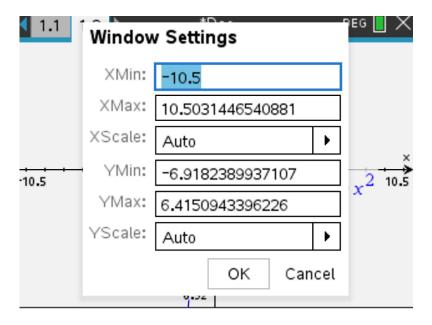
Solve[denominator trig[] == 0 && domain restriction, x]

Question 26 Tech-Active.

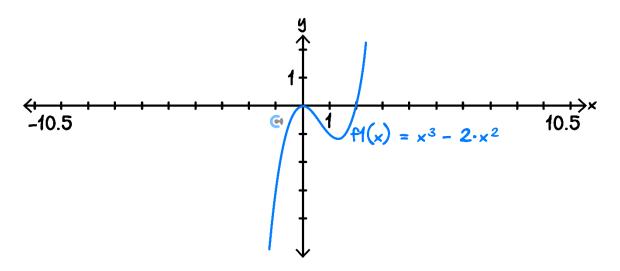
Find the asymptotes of the function $f(x) = 2 \sec \left(2x + \frac{\pi}{4}\right) - 3$ for $0 \le x \le 2\pi$.

Calculator Commands: Graphing

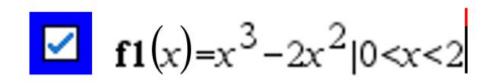
- Open a graph page and plot your function.
- **>** Zoom settings: Menu→ 4 (window/zoom)→ 1 enter your x and y-ranges.



Can also click the axis numbers on the graph and alter them directly.

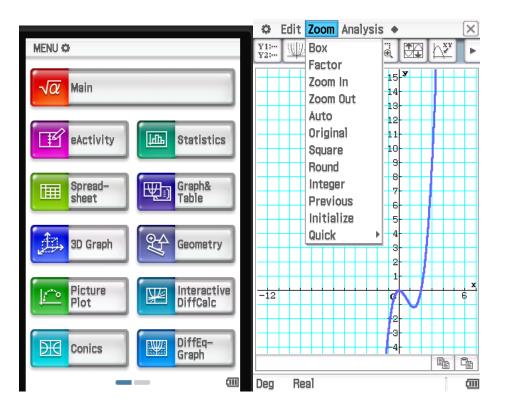


- Menu \rightarrow 6 (Analyse) to find min/max x and y-intercepts.
- Restrict domain to 0 < x < 2 use the bar can get it from ctrl+=

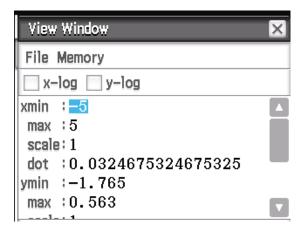


ONTOUREDUCATION

Casio: Click Graph & Table, and enter the function.



- Analysis → G-Solve to find intercepts.
- Use this button to set the view window.



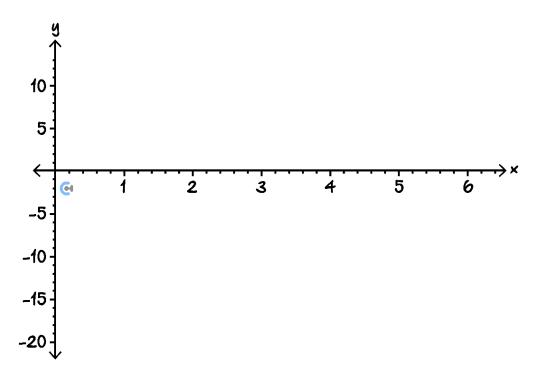
Use | to restrict domain → find it in Math 3.

$$\sqrt{y_1} = x_3 = 2 \cdot x_2 \cdot 10 < x < 2$$

- **Mathematica:** Plot[function, $\{x, x \text{min}, x \text{max}\}$, PlotRange → $\{y \text{min}, y \text{max}\}$]
 - PlotRange is optional but can be used to make the scale appropriate for the question.

Question 27 Tech-Active.

Sketch the graph of $y = 2\sec\left(2x + \frac{\pi}{4}\right) - 3$ for $0 \le x \le 2\pi$.



<u>Calculator Commands:</u> Simplifying compound angle/double angle and composition.

- Mathematica
 - "TrigExpand"
- TI-Nspire
 - "texpand"
 - $\bullet \quad \mathsf{Menu} \rightarrow 3 \rightarrow B \rightarrow 1$
 - Or Type *t* and menu 33
- Casio Classpad
 - "texpand"
 - ♠ Action→Transformation→tExpand

Question 28 Tech-Active.

Simplify $\cos(\sin^{-1}(2x-2)) + 1$.

Calculator Commands: Finding domain and rage

TI: domain(f(x), x), fMin and fMax

Define $f(x) = \sqrt{9-x^2}$	Done
domain(f(x),x)	-3≤x≤3
fMin(f(x),x)	x=-3 or x=3
fMax(f(x),x)	χ=0
/ (3)	0
/ (0)	3

TI UDF:

Analyse a Function: Find intercepts, critical points and their nature, maximal domain, asymptote.

analyse(<function>, <variable>)

analysed
$$\left(\frac{x^4 - 2 \cdot x^3 - 3 \cdot x^2 + 3 \cdot x + 1}{-3 \cdot x^3 - 6 \cdot x^2 - x + 1}, x, -5, 5\right)$$

- ▶ Start Point: $\left[-5 \quad \frac{262}{77} \right]$
- ▶ End Point: $\left[5 \quad \frac{-316}{529}\right]$
- ▶ Maximal Domain:

x≠-1.68469 and

 $x \neq -0.629579$ and

 $x \neq 0.314273$ and

-5≤x≤5

ONTOUREDUCATION

- Casio: Graph the function and use G-Solve to find min and max values for the range.
- **Mathematica**: FunctionDomain[f[x], x]. FunctionRange[f[x], x, y].

In[127]:=
$$f[x_{-}] := \sqrt{9 - x^2}$$

In[128]:= FunctionDomain[f[x], x]
Out[128]= $-3 \le x \le 3$
In[129]:= FunctionRange[f[x], x, y]
Out[129]= $0 \le y \le 3$

Mathematica UDF: Finfo[f[x], x] – gives domain and range all together.

```
FInfo[f[x], \{x, x \min, x \max\}, y]
```

Returns useful information about a function, including derivative, domain, range, period, horizontal intercepts, vertical intercepts, stationary points, inflexion points, left and rig sided asymptotes, oblique asymptotes, and vertical asymptotes.

FInfo
$$\left[\frac{x^2-1}{x(x^2-3)}, \{x, -Infinity, Infinity\}, y\right]$$

```
The function is \frac{x^2-1}{x\left(x^2-3\right)}

The derivative is -\frac{x^4+3}{x^2\left(x^2-3\right)^2}

Domain: x<-\sqrt{3} \lor -\sqrt{3} < x < 0 \lor 0 < x < \sqrt{3} \lor x > \sqrt{3}

Range: y \in \mathbb{R}

Period: 0

Horizontal Intercepts: \{-1,1\}

Vertical Intercepts: None

Stationary points: \{\{\reflefter] \bullet 0.871..., \reflefter] \bullet 0.123...\}, \{\reflefter] \bullet 0.123...\}}

Left sided asymtote: y = 0

Right sided asymtote: y = 0

Oblique asymtote: \{0\}

Vertical asymtote: \{x = 0, x = -\sqrt{3}, x = \sqrt{3}\}
```


Question 29 Tech-Active.

Find the domain and range of $\cos(\sin^{-1}(2x-2)) + 1$.

Space for Personal Notes

Section F: Exam 2 Questions (16 Marks)

INSTRUCTION: 16 Marks. 4 Minutes Reading. 20 Minutes Writing.

Question 30 (1 mark)

The implied domain of $y = \arcsin\left(\frac{x-a}{b}\right)$ where b > 0 is:

- A. [-1,1]
- **B.** [b, -b]
- C. [a b, a + b]
- **D.** [a + b, a b]

Question 31 (1 mark)

Let
$$f(x) = \frac{1}{\csc(2x)+2}$$
.

The number of asymptotes that the graph of f has in the interval $[-\pi, \pi]$ is:

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 5

Space for Personal Notes

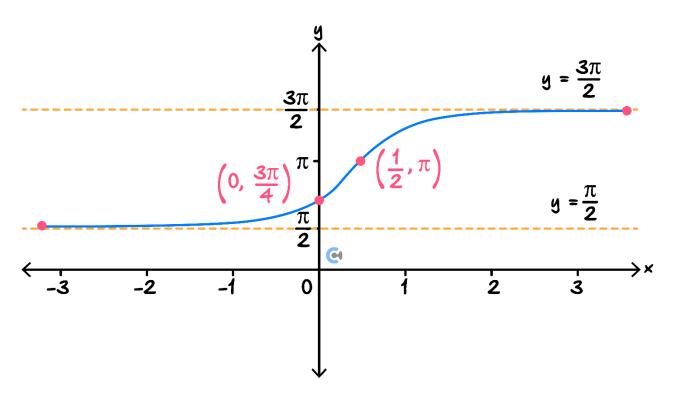
Question 32 (1 mark)

The range of the function $f(x) = \sin(\arccos(2x+1)) - 1$ is:

- **A.** [-1,0]
- **B.** $\left[\frac{2}{3}, 1\right]$
- **C.** [0,1]
- **D.** [1,2]

Question 33 (1 mark)

Part of the graph of y = f(x) is shown below.



The rule for f could be:

- **A.** $\cot(2x + 1) + \pi$
- **B.** $\arctan(2x 1) + \pi$
- C. $\arctan(2x) + \frac{\pi}{2}$
- **D.** $\arcsin(2x) + \pi$

Question 34 (1 mark)

If sin(x + y) = a and sin(x - y) = b, then sin(x) cos(y) is equal to:

- **A.** *ab*
- **B.** $\sqrt{a^2 + b^2}$
- C. $\sqrt{a^2 b^2}$
- **D.** $\frac{a+b}{2}$

Space	for	Personal	Notes
-			

Question 31 (11 mark	ks	mar	(11)	31	estion	Ou
-----------------------------	----	-----	------	----	--------	----

a.

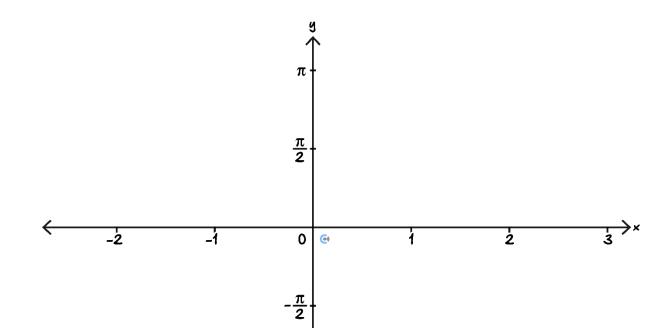
i. Use an appropriate double-angle formula with $t = \tan\left(\frac{\pi}{8}\right)$ to deduce a quadratic equation of the form $t^2 + bt + c = 0$, where b and c are real values. (2 marks)

ii. Hence, show that $\tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1$. (1 mark)

b. Consider the function $f: D \to R$, $f(x) = -2\arcsin(x^2 - 1)$.

i. Determine the maximal domain D and the range of f. (2 marks)

ii. Sketch the graph of y = f(x) on the axes below, labelling any endpoints and the y-intercept with their coordinates. (3 marks)



CONTOUREDUCATION

c. Let $x = \sec(t)$ and $y = \csc(t)$, where $t \in \left(0, \frac{\pi}{2}\right)$.	
Use trigonometric identities to find y as a function of x . (3 marks)	

Space for Personal Notes		

Contour Check

□ <u>Learning Objective</u>: [3.5.1] – Simplify the composition of inverse trigonometric functions

Key Takeaways

_	The range of sin ⁻¹	(\ !-	
	I DO TANGO AT CIN +	V 1 15	
	THE TUISE OF SILL	<i>1</i>	

- \square The range of $\cos^{-1}(x)$ is _____.
- \square Simplify the composition by treating the inside function as an angle θ .

□ Learning Objective: [3.5.2] - Simplify $a\cos(x) + b\sin(x)$

Key Takeaways

☐ Step 1: Find the radius by taking the two coefficients

$$r = \sqrt{a^2 + b^2}$$

- Step 2: Factor the expression by the ______
- \square Step 3: Replace the coefficients with $\cos(a)$ and $\sin(a)$. Remember to use the same angles.
- ☐ Step 4: Use ______ formula to express in terms of a single trigonometric function.

$$a\cos(x) + b\sin(x) =$$

$$a\cos(x) - b\sin(x) =$$

$$a\sin(x) + b\cos(x) =$$

$$a\sin(x) - b\cos(x) =$$

where
$$r = \sqrt{a^2 + b^2}$$
 and $\alpha = \tan^{-1}\left(\frac{b}{a}\right)$

□ <u>Learning Objective</u>: [3.5.3] – Apply Product to Sum and Sum to Product Identities to simplify trigonometric expressions

Key Takeaways

Product to Sum Identities

$$2\cos(x)\cos(y) = \underline{\hspace{1cm}}$$

$$2\sin(x)\sin(y) = \underline{\hspace{1cm}}$$

$$2\sin(x)\cos(y) = \underline{\hspace{1cm}}$$

Sum to product identities:

$$\cos(x) + \cos(y) = \underline{\hspace{1cm}}$$

$$\cos(x) - \cos(y) = \underline{\hspace{1cm}}$$

$$\sin(x) + \sin(y) = \underline{\hspace{1cm}}$$

$$\sin(x) - \sin(y) = \underline{\hspace{1cm}}$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs). ■
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- **What To Do?** Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

