

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

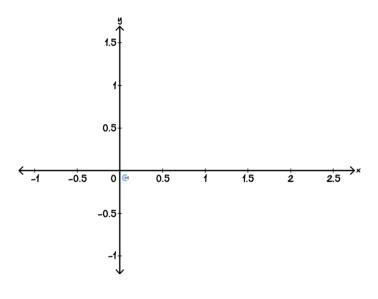
VCE Specialist Mathematics ½ Advanced Trigonometric Functions Exam Skills [3.5] Homework

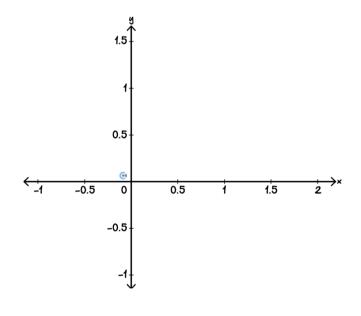
Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 02-Pg 16

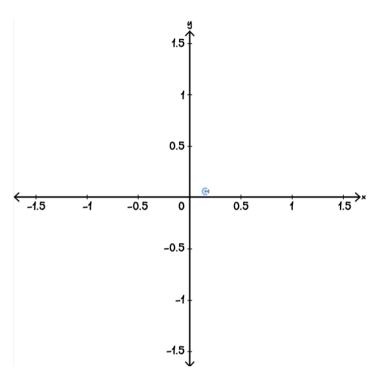
Section A: Compulsory Questions

<u>Sub-Section [3.5.1]</u>: Simplify the Composition of Inverse Trigonometric Functions


Qu	nestion 1	
a.	Simplify $\sin\left(\arcsin\left(\frac{1}{5}\right)\right)$.	
b.	Simplify sin(arctan(2)).	
c.	Simplify $\cos\left(\arcsin\left(\frac{3}{5}\right)\right)$.	
		-
Sn	pace for Personal Notes	


Question 2

a. Simplify and sketch the graph of $f(x) = \cos(\arcsin(x-1))$.



b. Simplify and sketch the graph of $f(x) = \sin(\arccos(2x+1))$.

c. Simplify and sketch the graph of tan(arcsin(x)).

Question 3

a. Simplify and state the maximal domain of $f(x) = \tan(\arcsin(2x - 1)) + \cos(\arctan(x + 2))$.

).	Simplify and state the maximal domain of $f(x) = \sin(\arccos(1 - x^2)) + \cos(\arcsin(x - 1))$.
•	Simplify and state the maximal domain $f(x) = \tan(\arcsin(2x + 1)) \cdot \cos(\arctan(3x))$.
•	Simplify and state the maximal domain $f(x) = \tan(\arcsin(2x + 1)) \cdot \cos(\arctan(3x))$.
•	Simplify and state the maximal domain $f(x) = \tan(\arcsin(2x + 1)) \cdot \cos(\arctan(3x))$.
•	
•	
•	
•	
•	

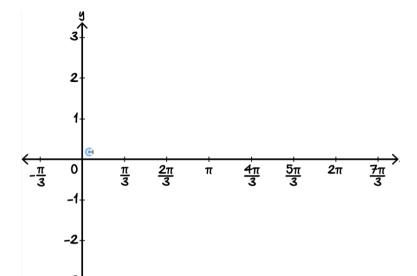
Space for Personal Notes

Sub-Section [3.5.2]: Simplify $a \cos(x) + b \sin(x)$

Qu	nestion 4
a.	Express $\sin(x) + \cos(x)$ in the form $r\sin(x + \alpha)$.
b.	Express $3\sin(x) + \sqrt{3}\cos(x)$ in the form $r\sin(x + \alpha)$.
c.	Express $2\cos(x) + \sqrt{2}\sin(x)$ in the form $r\cos(x - \alpha)$.

Space for Personal Notes

Question 5



a. Solve $\sin(x) - \sqrt{3}\cos(x) = 1$ for $0 \le x \le 2\pi$.

b. Solve $3\sin(x) - \sqrt{3}\cos(x) = \sqrt{3}$ for $0 \le x < 2\pi$.

c. Sketch the graph of $f(x) = \sqrt{3}\cos(x) - \sin(x)$ for $0 \le x \le 2\pi$. Label all turning points, endpoints and axes intercept with coordinates.

Question 6

a. Find the maximum and minimum value of $f(x) = 5\sin(x) + 12\cos(x)$.

CONTOUREDUCATION

b. Solve $2 \sin \left(x - \frac{\pi}{6} \right) + 2\sqrt{3} \cos \left(x - \frac{\pi}{6} \right) = 2$ for $0 \le x \le 2\pi$.

c. Show that for a > 0.

 $a \sin(2x) - b \cos^2(x) = \sqrt{4a^2 + b^2} \cos(x) \sin(x - \alpha)$, where $\alpha = \arctan\left(\frac{b}{2a}\right)$.

Space for Personal Notes

<u>Sub-Section [3.5.3]</u>: Apply Product-to-Sum and Sum-to-Product Identities to Simplify Trigonometric Expressions

Qu	estion 7
a.	Express $\sin(4\theta)\cos(2\theta)$ as a sum or difference.
b.	Express $2\cos(3A)\cos(5A)$ as a sum or difference.
c.	Express $cos(4A)sin(2A)$ as a sum or difference.
d.	Express $\sin(2\alpha) + \sin(2\beta)$ as a product.

e.	Express $cos(2x) + cos(2y)$ as a product.
f	Express $\sin(x + h) - \cos(x)$ as a product.
	Express sin(x + n) cos(x) as a product.

a. Solve $\sin(3\theta) + \sin(\theta) = 0$ for $0 \le \theta \le 2\pi$.

b. Solve $\cos(4x) + \cos(2x) = 0$ for $0 \le x \le \pi$.

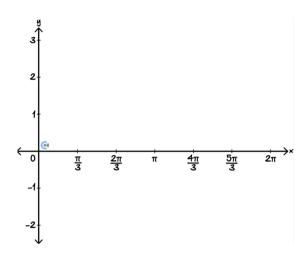
c. Solve $\sin(x) - \sin\left(\frac{3\pi}{4} - x\right) = 0$ for $0 \le \theta \le 2\pi$.

Question 9

a. Express $|a|\sin(x) - |a|\sin(3x)$ as a product and hence find its maximum and minimum values in terms of a.

·	 	 	

Space for Fersonal Notes	



Sub-Section: The 'Final Boss'

Question 10	
a.	Solve the equation $\sin(2x) + \sin(4x) = 0, x \in [0, \pi].$

CONTOUREDUCATION

- **b.** Consider the function $f:[0,2\pi] \to \mathbb{R}, f(x) = \sqrt{3}\cos\left(x \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{3}\right)$.
 - **i.** Sketch the graph of *f* on the axes below. Label all axes intercepts, turning points and endpoints with coordinates.

ii. Use your sketch to solve the equation f(x) = 1.

iii. Hence, find $\{x : f(x) > 1\}$.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- ▶ Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.lv/contour-specialist-consult-2025

