ONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Advanced Trigonometric Functions I [3.4]

Workbook

Outline:

Reciprocal Trigonometric Functions

Pg 2-7

Introduction of Reciprocal Trigonometric

Functions

- Trigonometric Identities
- Further Understanding of Reciprocal Trigonometric Functions

Graphs of Reciprocal Trigonometric Functions

Pg 8-17

- **Graphs of Reciprocal Functions**
- **Graphs of Reciprocal Trigonometric Functions**
- **Graphs of Complicated Reciprocal** Trigonometric Functions

Compound and Double Angle Formula

Pg 18-21

- Compound Angle Formula
- Double Angle Formula

Inverse Trigonometric Functions

Pg 22-31

- Inversing Trigonometric Functions
- Understanding Inverse Trigonometric
- Graphs of Inverse Trigonometric Functions

Learning Objectives:

SM12 [3.4.1] - Trigonometric Identities and Solving Exact Values of Reciprocal Functions

- SM12 [3.4.2] Graph Reciprocal Trigonometric Functions
- SM12 [3.4.3] Apply compound and Double Angle Formula to Solve Exact Values
- SM12 [3.4.4] Find Domain, Range and Rule of the Inverse Trigonometric Function
- □ SM12 [3.4.5] Graphing the Inverse Trigonometric Functions

Section A: Reciprocal Trigonometric Functions

Sub-Section: Introduction of Reciprocal Trigonometric Functions

What are Reciprocal Trigonometric Functions?

Reciprocal Trigonometric Functions

The reciprocal of sine is cosecant:

$$\cos(x) = \frac{1}{\sin(x)}$$

The reciprocal of cosine is secant:

$$\mathbf{sec}(x) = \frac{1}{\mathbf{cos}(x)}$$

The reciprocal of tangent is cotangent:

$$\underbrace{\cot(x)}_{} = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}$$

Space for Personal Notes

Question 1

Evaluate the following.

a. $\sec\left(-\frac{\pi}{3}\right)$

= - 1/2

b. cosec $\left(\frac{2\pi}{3}\right)$

$$= \frac{1}{\sin\left(\frac{2\pi}{3}\right)}$$

$$\frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}}$$

73

$$=\frac{2\sqrt{3}}{3}$$

c. $\cot\left(-\frac{5\pi}{6}\right)$

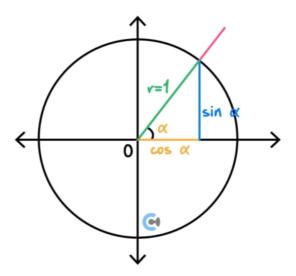
The

$$=\sqrt{3}$$

TIP: Look at their third alphabet!

Sub-Section: Trigonometric Identities

REMINDER



Trigonometric Identity is given by,

$$\sin^2(\theta) + \cos^2(\theta) = \underline{}$$

What Happens when we Divide Both Sides by $\sin^2(\theta)$ and $\cos^2(\theta)$?

Exploration: Other Trigonometric Identities

$$\frac{\sin^2(\theta) + \cos^2(\theta)}{\sin^2(\theta)} = \frac{1}{\sin^2(\theta)}$$

Divide each term by $\cos^2(\theta)$.

We can **divide each term by** $\sin^2(\theta)$.

term by
$$\cos^2(\theta)$$
.

$$\frac{1}{1} + \cos^2(\theta) = \frac{1}{1} + \cos^2(\theta)$$

$$= \frac{1}{1} + \cos^2(\theta) = \cos^2(\theta)$$

Trigonometric Identities

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

$$1 + \tan^2(\theta) = \sec^2(\theta)$$

$$1 + \cot^2(\theta) = \csc^2(\theta)$$

Question 2

Given that $\sec(x) = -4$ and $x \in \left[\frac{\pi}{2}, \pi\right]$, find $\csc(x)$ and $\tan(x)$. Show your working.

$$\frac{1}{\cos(\pi)} = -4$$

$$\cos(\pi) = -\frac{1}{4}$$

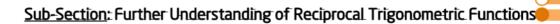
$$H$$

$$15$$

$$\tan(\alpha) = -\sqrt{15} = -\sqrt{15}$$

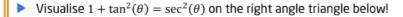
$$sin(\pi) = \frac{\sqrt{15}}{4}$$

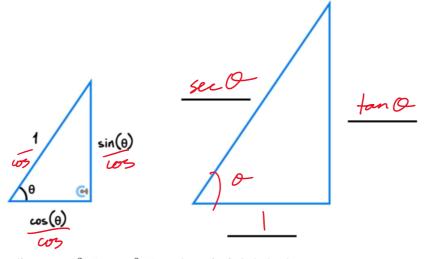
$$cosec(\pi) = \frac{4}{\sqrt{15}}$$



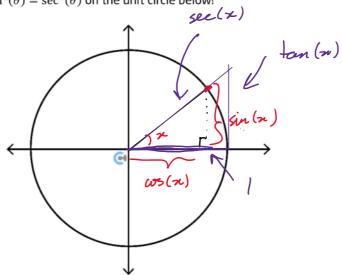
Let's use the Trigonometric Identities to visualise the Reciprocal Trig Values!

 $\underline{\text{Exploration}}\text{: Visualisation of } 1 + tan^2(\theta) = sec^2(\theta)$





Hence, visualise $1 + \tan^2(\theta) = \sec^2(\theta)$ on the unit circle below!

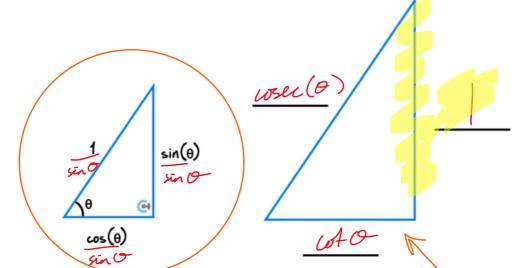


VCE Specialist Mathematics $\frac{1}{2}$

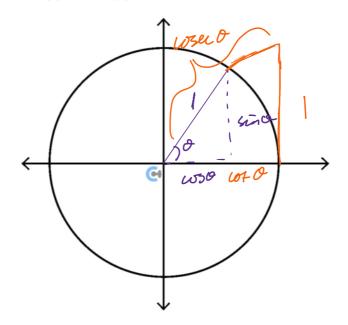
Try the Next Exploration Yourself!

Exploration: Visualisation of $1 + \cot^2(\theta) = \csc^2(\theta)$

Visualise $1 + \cot^2(\theta) = \csc^2(\theta)$ on the right angle triangle below!



Hence, visualise $1 + \cot^2(\theta) = \csc^2(\theta)$ on the unit circle below!



Section B: Graphs of Reciprocal Trigonometric Functions

Sub-Section: Graphs of Reciprocal Functions

Discussion: What would the graph of $\frac{1}{f(x)}$ have when the f(x) = 0?

A symptote

Discussion: What would the graph of $\frac{1}{f(x)}$ have, when the $\frac{f(x)}{f(x)}$ is increasing?

Discussion: What would the graph of $\frac{1}{f(x)}$ have, when the f(x) is decreasing? + (x) + (x)

Properties of Reciprocal Graphs

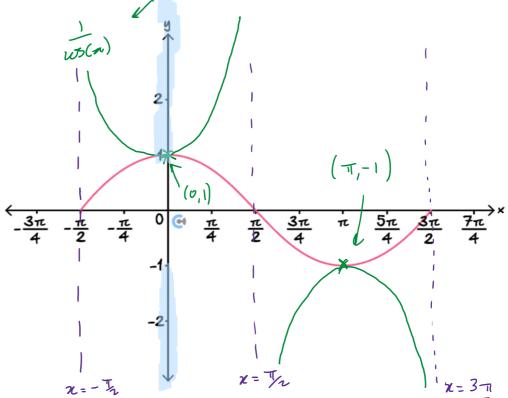
Feature on $y = f(x)$	Feature on $y = \frac{1}{f(x)}$
x-intercept	Vertical asymptote
Positive y-values	Positive y-values
Negative y-values	Negative y-values
Increasing	Decreasing
Decreasing	Increasing
The graphs intersect only when $f(x) = 1$ or $f(x) = -1$.	

Sub-Section: Graphs of Reciprocal Trigonometric Functions

Let's Try Sketching the Reciprocal Trigonometric Functions!

Question 3 Walkthrough.

a. On the same axes below, sketch $\sec(x)$ for $x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$. Label all your asymptotes and turning points.



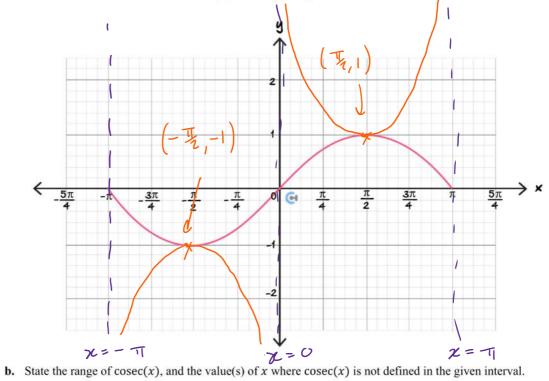
b. State the range of sec(x), and the value(s) of x where sec(x) is not defined in the given interval.

ran =
$$(-\infty, -1] \cup [1, \infty)$$

 $\chi = -T_2, T_2, \frac{3\pi}{2}$

Question 4

a. On the same axes below, sketch $\csc(x)$ for $x \in [-\pi, \pi]$.



$$ran = (-\infty, -1) \cup [1, \infty)$$

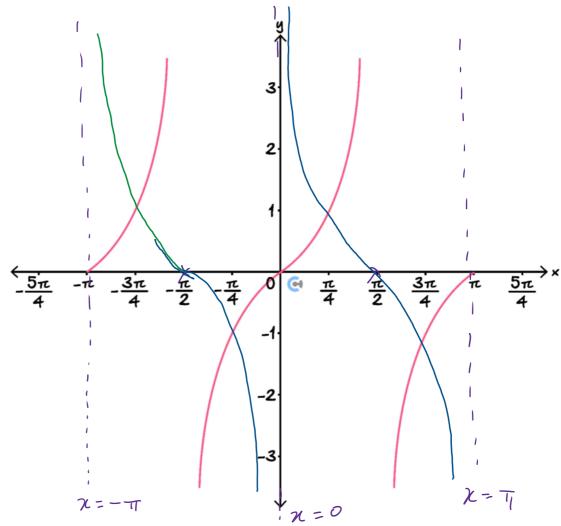
$$(2 = -\pi, 0, \pi)$$

VCE Specialist Mathematics $\frac{1}{2}$

Question 5 Walkthrough.

o tan

a. On the same axes below, sketch $\cot(x)$ for $x \in [-\pi, \pi]$.

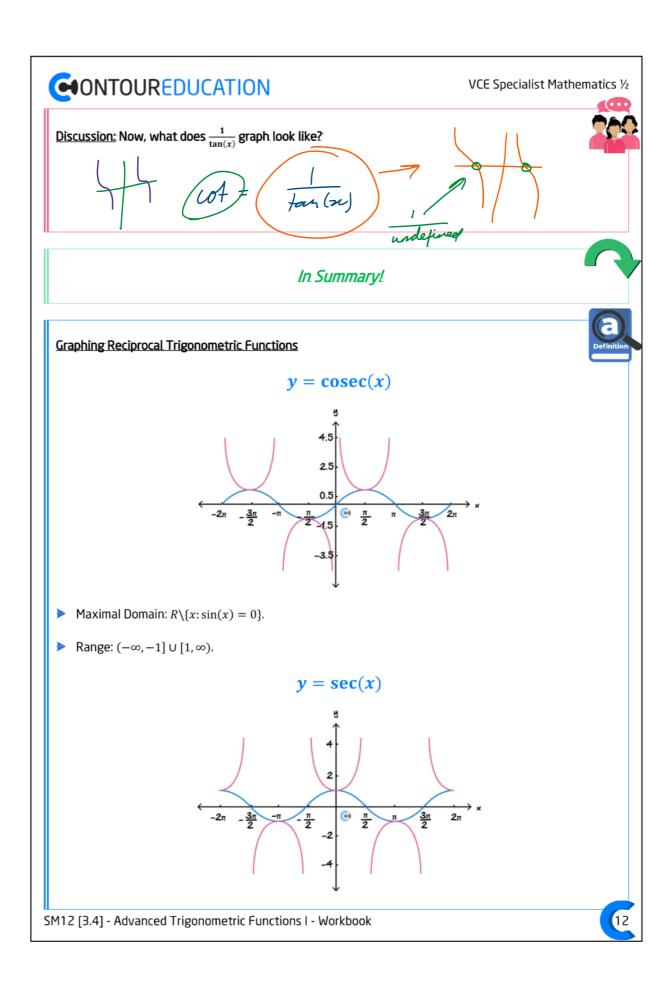


b. State the range of cot(x), and the value(s) of x where cot(x) is not defined in the given interval.

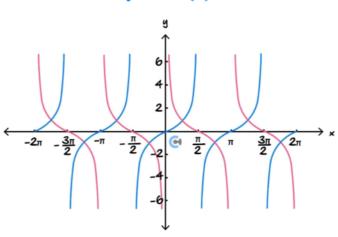
ran = R $x = -\pi, 0, \tau$

SM12 [3.4] - Advanced Trigonometric Functions I - Workbook

11



- Maximal Domain: $R \setminus \{x : \cos(x) = 0\}$.
- Range: $(-\infty, -1] \cup [1, \infty)$.



- Maximal Domain: $R \setminus \{x: \tan(x) = 0\}$.
- Range: R.

<u>Discussion:</u> How often do the asymptotes occur for cosec and sec?

<u>Discussion</u>: How often do the asymptotes occur for cot?

Every In units

Sub-Section: Graphs of Complicated Reciprocal Trigonometric Functions

Okay, now, about do we Sketch Harder Ones with Transformations?

Steps for Sketching Reciprocal Trig Graphs

Find an asymptote.

equate Angle = 0 for cosec and cot graphs

equate
$$Angle = \frac{\pi}{2}$$
 for $\sec graphs$

Find and mark all other asymptotes in the domain.

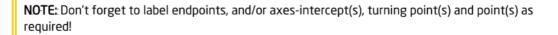
 $Add/Subtract \frac{\pi}{n}$ from first asymptotes

Plot a point in between the two asymptotes.

Midpoint = **Turning Point** for cosec and sec graphs

Midpoint = Inflection Point for cot graphs

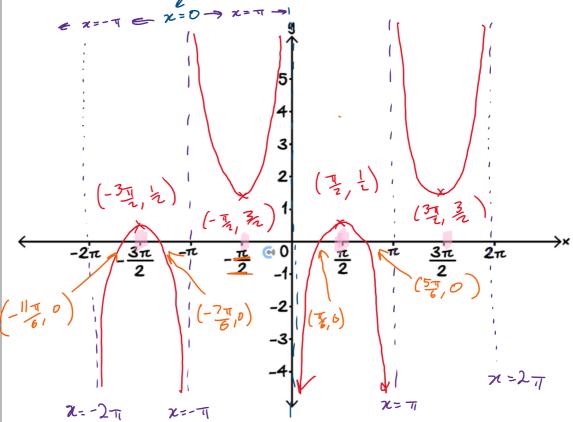
- Solve for axes intercept (if applicable).
- Repeat the shape over the entire domain.
 - For cosec and sec graphs, the "U" shapes alternate between asymptotes, while cot graphs look the same between asymptotes.



Space for Personal Notes

Question 6 Walkthrough.

Sketch the graph of $y = -\frac{1}{2} \operatorname{cosec}(x) + 1$ for $-2\pi \le x \le 2\pi$, labelling all stationary points, axes-intercepts and asymptotes.



Space for Personal Notes

$$0 = -\frac{1}{2} \operatorname{cosec}(x) + 1$$

$$\operatorname{cosec}(x) = 2$$

$$\sin(x) = \frac{1}{2}$$

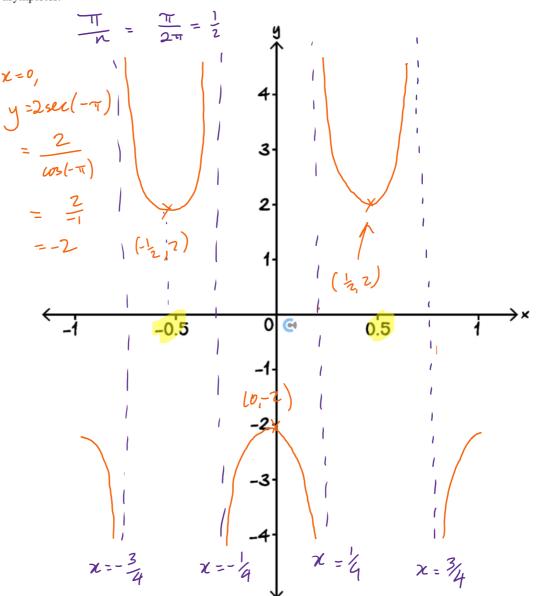
$$x = \frac{1}{6}, \frac{5\pi}{6}, \frac{-\operatorname{period}}{6}, \frac{-7\pi}{6}$$

Your Turn!

Question 7

$$T(2x-1) = \frac{1}{2}$$
 $2x-1 = \frac{1}{2}$
 $2x = \frac{3}{4}$

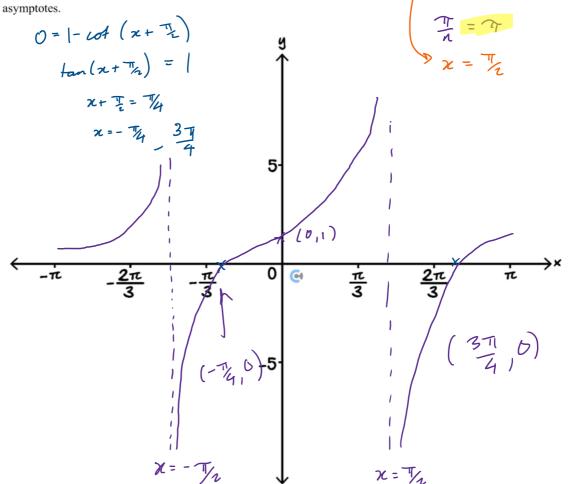
Sketch the graph of $y = 2 \sec(\pi(2x - 1))$ for $-1 \le x \le 1$, labelling all stationary points, axes-intercepts and asymptotes.



Now Cot! Remember they have an Inflection Instead of Turning Points!

Question 8 $\chi + \frac{\pi}{2} = 0$ $\chi = -\frac{\pi}{2}$

Sketch the graph of $y = 1 - \cot\left(x + \frac{\pi}{2}\right)$ for $-\pi \le x \le \pi$, labelling all stationary points, axes-intercepts and



Space for Personal Notes

Section C: Compound and Double Angle Formula

Sub-Section: Compound Angle Formula

Let's look at the compound angle formulal

Compound Angle Formula

sin compound angle formulae.

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

cos compound angle formulae.

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

tan compound angle formulae.

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x - y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

Space for Personal Notes

Question 9 Walkthrough.

Using compound angle formula, evaluate $\sin\left(\frac{-\pi}{12}\right)$.

$$\sin(-\frac{\pi}{2}) = \sin(\frac{\pi}{4} - \frac{\pi}{3})$$

$$= \sin(\frac{\pi}{4}) \cos(\frac{\pi}{3}) - \cos(\frac{\pi}{4}) \sin(\frac{\pi}{3})$$

$$= \frac{\sqrt{2}}{2} \times \frac{1}{2} - \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3}$$

$= \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} = \frac{\sqrt{2} - \sqrt{6}}{4}$

Question 10

Using compound angle formula, evaluate $\cos\left(\frac{5\pi}{12}\right)$.

$$uss(\frac{3\pi}{12} + \frac{2\pi}{72})$$
= $uss(\frac{3\pi}{4} + \frac{7\pi}{6})$
= $uss(\frac{7\pi}{4} + \frac{7\pi}{6})$
= $uss(\frac{7\pi}{4}) uss(\frac{7\pi}{6}) - sin(\frac{7\pi}{4}) sin(\frac{7\pi}{6})$
= $\frac{52}{2} \times \frac{53}{2} - \frac{52}{2} \times \frac{1}{2}$
= $\frac{52}{4} - \frac{52}{4} = \frac{52}{4}$

SM12 [3.4] - Advanced Trigonometric Functions I - Workbook

19

Sub-Section: Double Angle Formula

What do We Get if x and y Were the Same for the Compound Angle Formula?

Double Angle Formulae

sin double angle formula.

$$\sin(2x) = 2\sin(x)\cos(x)$$

cos double angle formula.

$$cos(2x) = cos2(x) - sin2(x)$$
$$= 2 cos2(x) - 1$$

$$=1-2\sin^2(x)$$

tan double angle formula.

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

Question 11 Walkthrough.

Find $\sin(2t)$, where $\cos(t) = -\frac{1}{8}$.

$$sin(2t) = 2 sin(t) cos(t)$$

$$= 2(\pm \frac{163}{8})(-\frac{1}{8})$$

$$= 2(\pm \frac{163}{8})(-\frac{1}{8})$$

$$= \pm \frac{1}{32}$$

$$= \pm \frac{3\sqrt{7}}{32}$$

CONTOUREDUCATION

VCE Specialist Mathematics ½

Ouestion 12

Find $\cos(2t)$, where $\sin(t) = -\frac{1}{8}$.

$$uo(2t) = 1 - 2sin^{2}(t)$$

$$= 1 - 2(-\frac{1}{8})^{2}$$

$$= 1 - 2 \times \frac{1}{64}$$

$$= 1 - \frac{1}{32} \quad us(2t) = \frac{1}{32}$$

Calculator Commands: Expanding Trigonometric Identities

Mathematica

TI-Nspire

Casio Classpad

● "TrigExpand"

"texpand"

"texpand"

Question 13 Tech-Active.

Expand $\sin(2x + y)$ in terms of x and y.

Menu-3-B-1

 $tExpand(sin(2\cdot x+y))$

 $2 \cdot (\cos(x))^2 \cdot \sin(y) + 2 \cdot \sin(x) \cdot \cos(x) \cdot \cos(y)$

Section D: Inverse Trigonometric Functions

Sub-Section: Inversing Trigonometric Functions

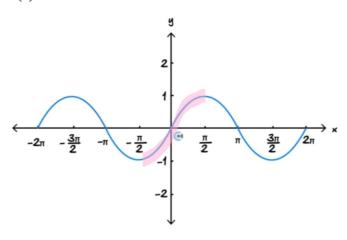
Discussion

What does the original function need to be for the inverse function to exist?

1:6:1

Question 14 Walkthrough.

Consider the function sin(x) sketched on the axes below.



- **a.** Shade the part of the graph such that the sin(x) is 1:1.
- **b.** State the domain and range of sin(x) such that the $sin^{-1}(x)$ exists.

dom sin =
$$\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$$

ran sin = $\begin{bmatrix} -1, 1 \end{bmatrix}$

c. Hence, state the domain and range of $\sin^{-1}(x)$.

dom
$$\sin^{-1} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

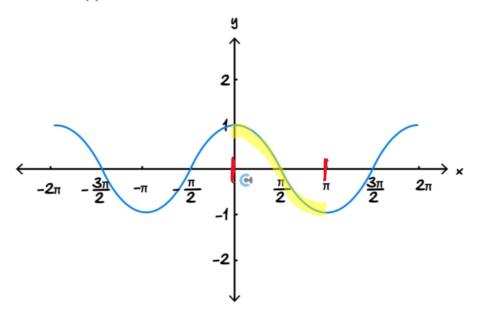
ran $\sin^{-1} = \begin{bmatrix} -\frac{\pi}{2} \\ \frac{\pi}{2} \end{bmatrix}$

SM12 [3.4] - Advanced Trigonometric Functions I - Workbook

22

Question 15 Walkthrough.

Consider the function cos(x) sketched on the axes below.



- **a.** Shade the part of the graph such that the cos(x) is 1:1.
- **b.** State the domain and range of cos(x), such that the $cos^{-1}(x)$ exists.

dom
$$\omega_5(x) = [0, T]$$

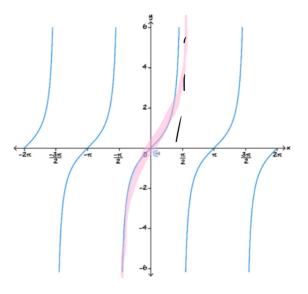
ran $\omega_5(x) = [-1, 1]$

c. Hence, state the domain and range of $\cos^{-1}(x)$.

dom
$$\cos' = [-1,1]$$
ran $\cos' = [0,7]$

Question 16 Walkthrough.

Consider the function tan(x) sketched on the axes below.



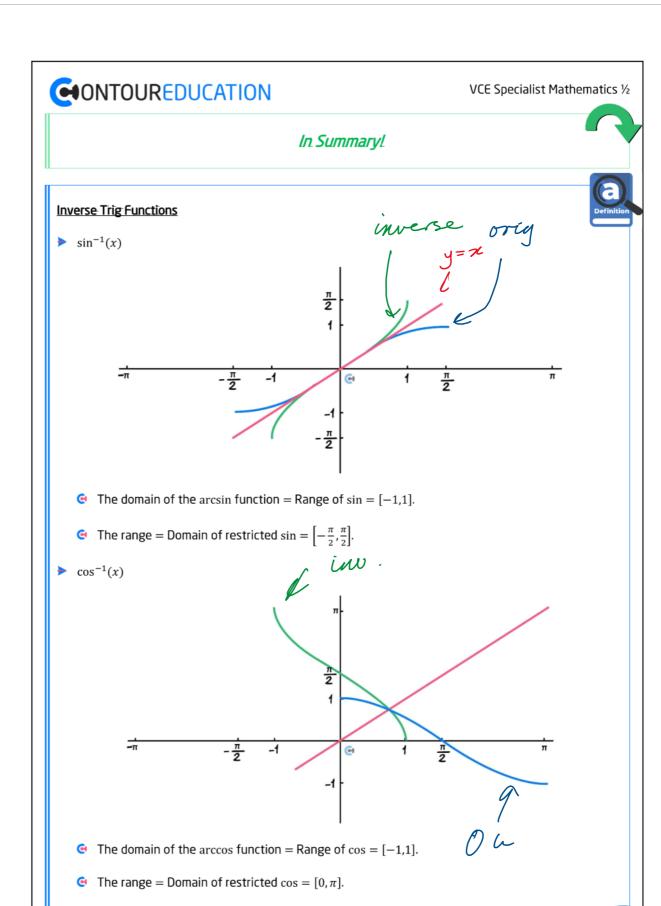
- a. Shade the part of the graph such that the tan(x) is 1:1.
- **b.** State the domain and range of tan(x) such that the $tan^{-1}(x)$ exists.

dom
$$tan(n) = (-\frac{\pi}{2}, \frac{\pi}{2})$$

ran $tan(n) = \mathbb{R}$

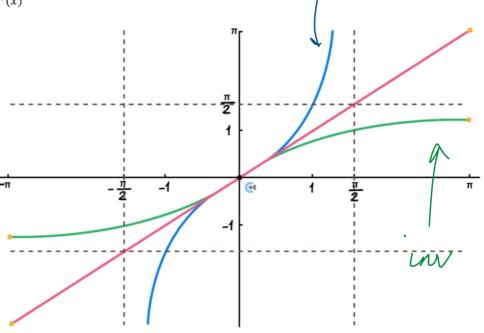
c. Hence, state the domain and range of $tan^{-1}(x)$.

dom
$$tan^{-1}(\pi) = \mathbb{R}$$
ran $tan^{-1}(\pi) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$



VCE Specialist Mathematics $\frac{1}{2}$

 \rightarrow tan⁻¹(x)



- **G** The domain of the arctan function = Range of tan = R.
- The range = Domain of restricted $\tan = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Space for Personal Notes

SM12 [3.4] - Advanced Trigonometric Functions I - Workbook

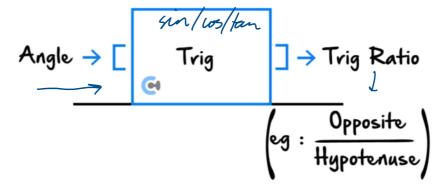
26

Sub-Section: Understanding Inverse Trigonometric Functions

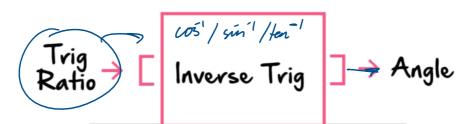
What do Inverse Trigonometric Functions Do?

Exploration: Understanding Inverse Trig Functions

We can consider the normal trigonometric function to be the following:



Hence, inverse trigonometric functions can be visualised to perform the following:



- In summary, inverse trig functions have:
 - G x-value: $\frac{y}{y} = y$ -value original trig functions.
 - y-value: A y = x-value of original trig functions.

Space for Personal Notes

Question 17

Evaluate the following, or explain why they are undefined.

a. $\arcsin\left(-\frac{1}{2}\right)$

b. $\arccos\left(\frac{3}{\sqrt{3}}\right)$

Indefined

c. $\arctan\left(\frac{1}{\sqrt{3}}\right)$

tan-1

ut of domain

NOTE: Inverse functions are angles.

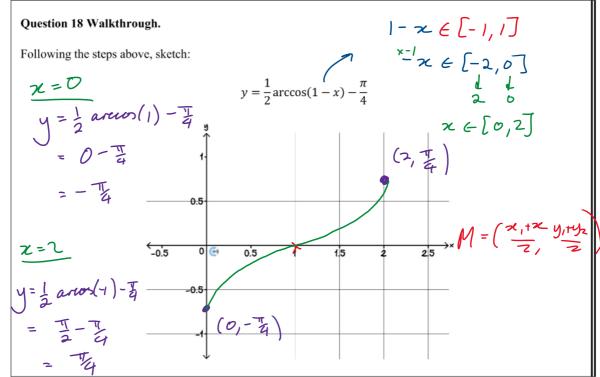
NOTE: Consider the range of the inverse trig functions!

Sub-Section: Graphs of Inverse Trigonometric Functions

How do we Sketch Inverse Trigonometric Functions with Transformations?

Steps for Graphing General Arcsin and Arccos

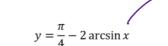
- Find the unplied domain of the function.
- Find and plot the ______ of the graph by substituting ends of the domain.
- Find and plot the acis where if required.
- Using the previously plotted points as a guide, sketch a curry shape.



 $x \in [-1, 1]$

Question 19

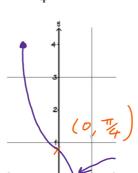
Following the steps above, sketch:

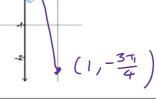


$$\chi = -1$$
 $y = \frac{\pi}{4} - 2 \arcsin(-1)$
 $y = \frac{\pi}{4} - 2 (-\frac{\pi}{4}) = \frac{5\pi}{4}$

(0)

$$=\frac{\pi}{4}-2\left(\frac{\pi}{2}\right)=-\frac{3\pi}{4}$$





Now arctan Functions!

Steps for Graphing General Graphs of arctan

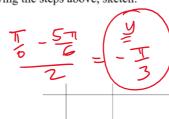
Find the Norwoodal asymptote of the graph and plot them.

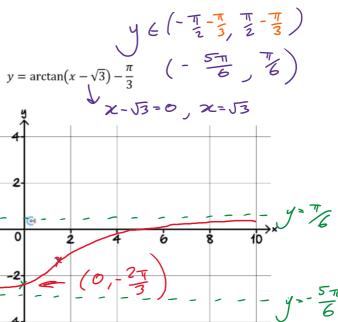
- You can find the asymptotes by finding the range of the arctan function.
- **c** E.g., the range of $\arctan(x) + \pi$ is $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$, so the asymptotes are $y = \frac{\pi}{2}$ and $y = \frac{3\pi}{2}$.
- Inflection point is given by (h, k).
 - The x-value can be found by $\underline{\qquad}$
 - The y-value can be found by middle of asymptotes

 Find and plot the axis interests if required.
- Using the previously plotted points and asymptotes as a guide, sketch the function.

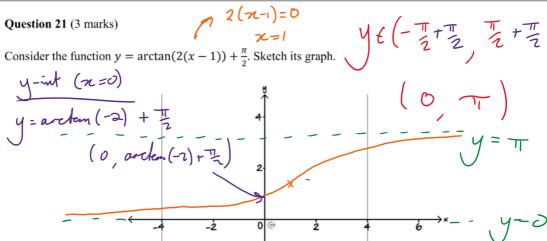
Question 20 Walkthrough.

Following the steps above, sketch:





NOTE: $tan^{-1}(2) > tan^{-1}(1) = \frac{\pi}{4}$.



Contour Check

Learning Objective: [3.4.1] – Trigonometric Identities and Solving Exact. Values of Reciprocal Functions

Key Takeaways

$$\sin^2(\theta) + \cos^2(\theta) = \underline{\hspace{1cm}}$$

$$1 + \tan^2(\theta) = \sec^2 \theta$$

$$1 + \tan^{2}(\theta) = \frac{\sec^{2}(\theta)}{1 + \cot^{2}(\theta)} = \frac{\csc^{2}(\theta)}{\cot^{2}(\theta)}$$

Learning Objective: [3.4.2] - Graph Reciprocal Trigonometric Functions

Key Takeaways

- ☐ If the inside of a reciprocal trig function is nx, it has asymptotes every _____ units.
 ☐ cosec and sec **Manageme** [shape] / [flip] after every asymptote.

Learning Objective: [3.4.3] - Apply compound and Double Angle Formula to Solve Exact Values

Key Takeaways

- To find $\cos\left(\frac{\pi}{8}\right)$, it is more appropriate to use the [double] / [compound] angle formula.
- To find $\sin\left(\frac{7\pi}{12}\right)$, it is more appropriate to use the [double] / [compound] angle formula.
- Sin double angle formula:

$$\sin(2x) = 2 \sin(x) \cos(x)$$

Cos double angle formula:

$$\cos(2x) = \underline{\cos(x) - \sin^2(x)}$$

$$= \underline{2\cos^2(x) - 1}$$

$$= \underline{1 - 2\sin^2(x)}$$

Tan double angle formula:

$$\tan(2x) = \frac{2 \ln(x)}{|-\ln(x)|}$$

Learning Objective: [3.4.4] – Find Domain, Range and Rule of the Inverse Trigonometric Function

Key Takeaways

- $tan^{-1}(x)$ has the domain ______
- \Box $\tan^{-1}(x)$ has an inflection point at \bigcirc \bigcirc \bigcirc
- □ Inverse trig functions output an __anyle____.
- \square To get the inverse of a trig function, we restrict the function's domain so that it is $\frac{1-6-1}{2}$
- □ Learning Objective: [3.4.5] Graphing the Inverse Trigonometric Functions

Key Takeaways

- □ $tan^{-1}(x)$ has [horizontal] / [vertical] asymptotes at $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.
- An untransformed \sin^{-1} graph has a point of inflection at (0, 0)

SM12 [3.4] - Advanced Trigonometric Functions I - Workbook

34

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

