CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Advanced Trigonometric Functions [3.4]

Workbook

Outline:

Reciprocal Trigonometric Functions

Pg 2-7

- Introduction of Reciprocal Trigonometric Functions
- Trigonometric Identities
- Further Understanding of Reciprocal Trigonometric Functions

Graphs of Reciprocal Trigonometric Functions

Pg 8-17

- Graphs of Reciprocal Functions
- Graphs of Reciprocal Trigonometric Functions
- Graphs of Complicated Reciprocal Trigonometric Functions

Compound and Double Angle Formula

Pg 18-21

- Compound Angle Formula
- Double Angle Formula

Inverse Trigonometric Functions

Pg 22-31

- Inversing Trigonometric Functions
- Understanding Inverse Trigonometric Functions
- Graphs of Inverse Trigonometric Functions

Learning Objectives:

SM12 [3.4.1] - Trigonometric Identities and Solving Exact Values of Reciprocal Functions

- SM12 [3.4.2] Graph Reciprocal Trigonometric Functions
- SM12 [3.4.3] Apply compound and Double Angle Formula to Solve Exact Values
- SM12 [3.4.4] Find Domain, Range and Rule of the Inverse Trigonometric Function
- □ SM12 [3.4.5] Graphing the Inverse Trigonometric Functions

Section A: Reciprocal Trigonometric Functions

Sub-Section: Introduction of Reciprocal Trigonometric Functions

What are Reciprocal Trigonometric Functions?

Reciprocal Trigonometric Functions

The reciprocal of **sine** is **cosecant**:

$$\mathbf{cosec}(x) = \frac{1}{\sin(x)}$$

The reciprocal of cosine is secant:

$$\sec(x) = \frac{1}{\cos(x)}$$

> The reciprocal of tangent is cotangent:

$$\cot(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}$$

Question 1

Evaluate the following.

a. $\sec\left(-\frac{\pi}{3}\right)$

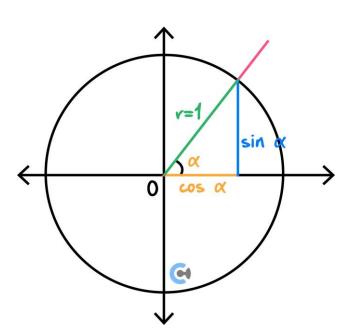
b. $\csc\left(\frac{2\pi}{3}\right)$

 $\mathbf{c.} \quad \cot\left(-\frac{5\pi}{6}\right)$

TIP: Look at their third alphabet!

Sub-Section: Trigonometric Identities

REMINDER



Trigonometric Identity is given by,

$$\sin^2(\theta) + \cos^2(\theta) = \underline{\hspace{1cm}}$$

What Happens when we Divide Both Sides by $\sin^2(\theta)$ and $\cos^2(\theta)$?

Exploration: Other Trigonometric Identities

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

Divide each term by $\cos^2(\theta)$.

We can **divide each term by** $\sin^2(\theta)$.

Trigonometric Identities

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

$$1 + \tan^2(\theta) = \sec^2(\theta)$$

$$1 + \cot^2(\theta) = \csc^2(\theta)$$

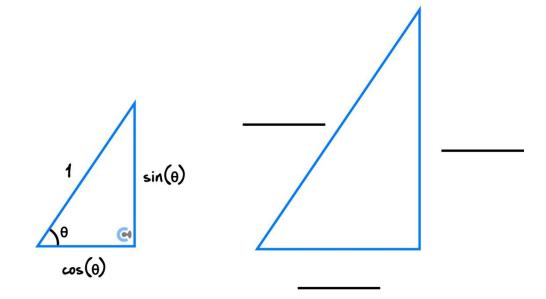
Question 2

Given that sec(x) = -4 and $x \in \left[\frac{\pi}{2}, \pi\right]$, find cosec(x) and tan(x). Show your working.

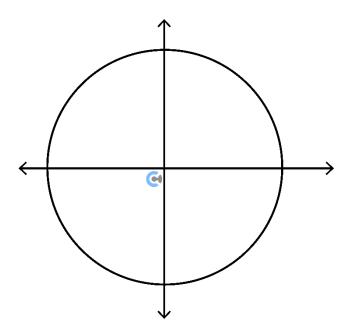
Let's use the Trigonometric Identities to visualise the Reciprocal Trig Values!

Exploration: Visualisation of $1 + \tan^2(\theta) = \sec^2(\theta)$

Visualise $1 + \tan^2(\theta) = \sec^2(\theta)$ on the right angle triangle below!

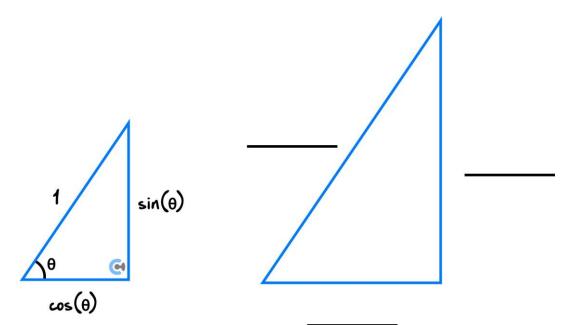


Hence, visualise $1 + \tan^2(\theta) = \sec^2(\theta)$ on the unit circle below!

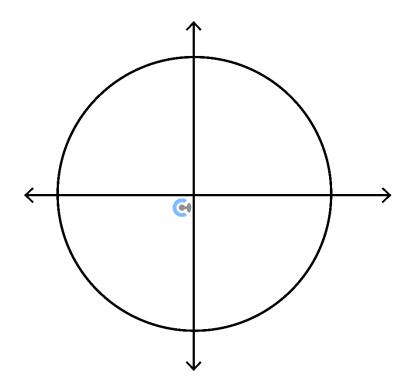


Exploration: Visualisation of $1 + \cot^2(\theta) = \csc^2(\theta)$

Visualise $1 + \cot^2(\theta) = \csc^2(\theta)$ on the right angle triangle below!



Hence, visualise $1 + \cot^2(\theta) = \csc^2(\theta)$ on the unit circle below!



Section B: Graphs of Reciprocal Trigonometric Functions

Sub-Section: Graphs of Reciprocal Functions

<u>Discussion:</u> What would the graph of $\frac{1}{f(x)}$ have when the f(x) = 0?

<u>Discussion:</u> What would the graph of $\frac{1}{f(x)}$ have, when the f(x) is increasing?

<u>Discussion:</u> What would the graph of $\frac{1}{f(x)}$ have, when the f(x) is decreasing?

Properties of Reciprocal Graphs

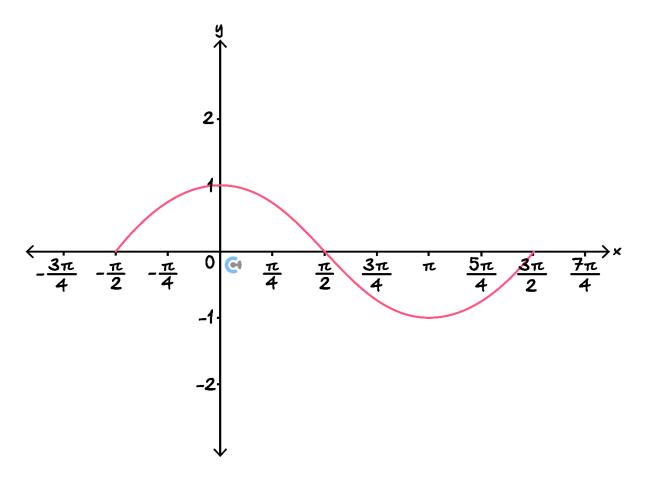
Feature on $y = f(x)$	Feature on $y = \frac{1}{f(x)}$
<i>x</i> -intercept	Vertical asymptote
Positive y-values	Positive y-values
Negative y-values	Negative y-values
Increasing	Decreasing
Decreasing	Increasing
The graphs intersect only when $f(x) = 1$ or $f(x) = -1$.	

Sub-Section: Graphs of Reciprocal Trigonometric Functions

Let's Try Sketching the Reciprocal Trigonometric Functions!

Question 3 Walkthrough.

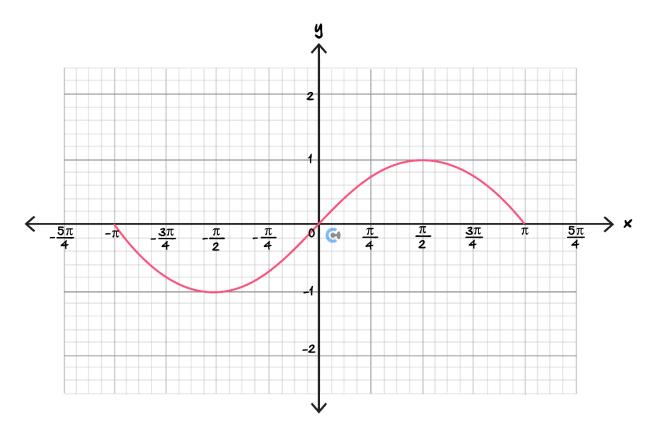
a. On the same axes below, sketch $\sec(x)$ for $x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$. Label all your asymptotes and turning points.



b. State the range of sec(x), and the value(s) of x where sec(x) is not defined in the given interval.

Question 4

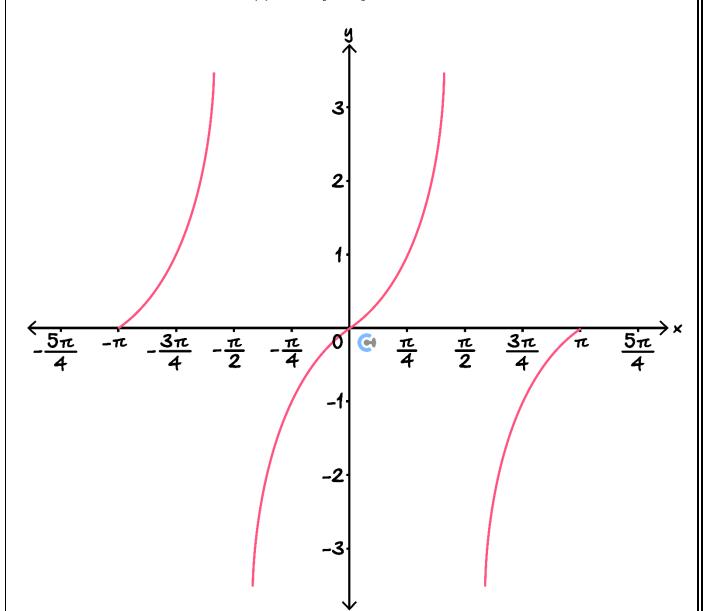
a. On the same axes below, sketch $\csc(x)$ for $x \in [-\pi, \pi]$.



b. State the range of cosec(x), and the value(s) of x where cosec(x) is not defined in the given interval.

Question 5 Walkthrough.

a. On the same axes below, sketch $\cot(x)$ for $x \in [-\pi, \pi]$.



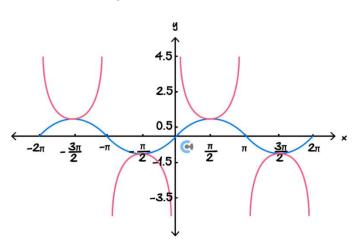
b. State the range of cot(x), and the value(s) of x where cot(x) is not defined in the given interval.

<u>Discussion:</u> Now, what does $\frac{1}{\tan(x)}$ graph look like?

In Summary!

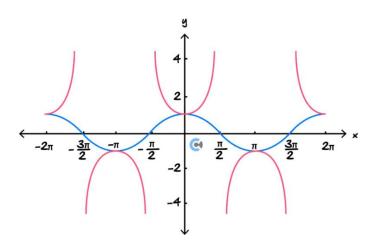
Graphing Reciprocal Trigonometric Functions

$$y = \mathbf{cosec}(x)$$



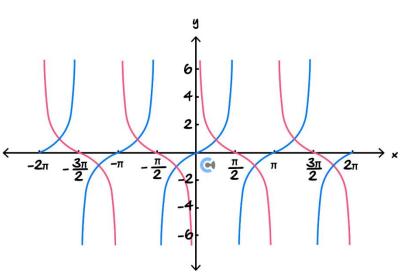
- Maximal Domain: $R \setminus \{x : \sin(x) = 0\}$.
- Range: $(-\infty, -1] \cup [1, \infty)$.

$$y = \sec(x)$$



CONTOUREDUCATION

- Maximal Domain: $R \setminus \{x : \cos(x) = 0\}$.
- ▶ Range: $(-\infty, -1] \cup [1, \infty)$.



- Maximal Domain: $R \setminus \{x : \tan(x) = 0\}$.
- Range: R.

<u>Discussion:</u> How often do the asymptotes occur for cosec and sec?

 $\underline{\mbox{Discussion:}}$ How often do the asymptotes occur for \cot

Sub-Section: Graphs of Complicated Reciprocal Trigonometric Functions

Okay, now, about do we Sketch Harder Ones with Transformations?

Steps for Sketching Reciprocal Trig Graphs

Find an asymptote.

equate Angle = 0 for cosec and cot graphs

equate
$$Angle = \frac{\pi}{2}$$
 for sec graphs

Find and mark all other asymptotes in the domain.

Add/Subtract
$$\frac{\pi}{n}$$
 from first asymptotes

Plot a point in between the two asymptotes.

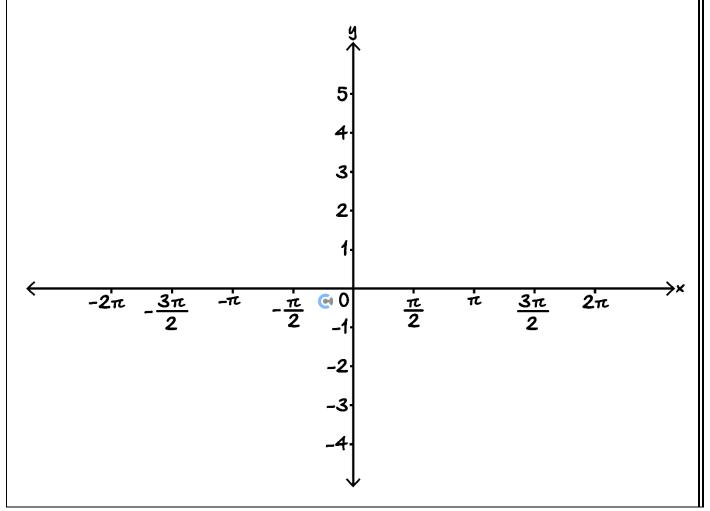
Midpoint = Turning Point for cosec and sec graphs
Midpoint = Inflection Point for cot graphs

- Solve for axes intercept (if applicable).
- Repeat the shape over the entire domain.
 - For cosec and sec graphs, the "U" shapes alternate between asymptotes, while cot graphs look the same between asymptotes.

NOTE: Don't forget to label endpoints, and/or axes-intercept(s), turning point(s) and point(s) as required!

Question 6 Walkthrough.

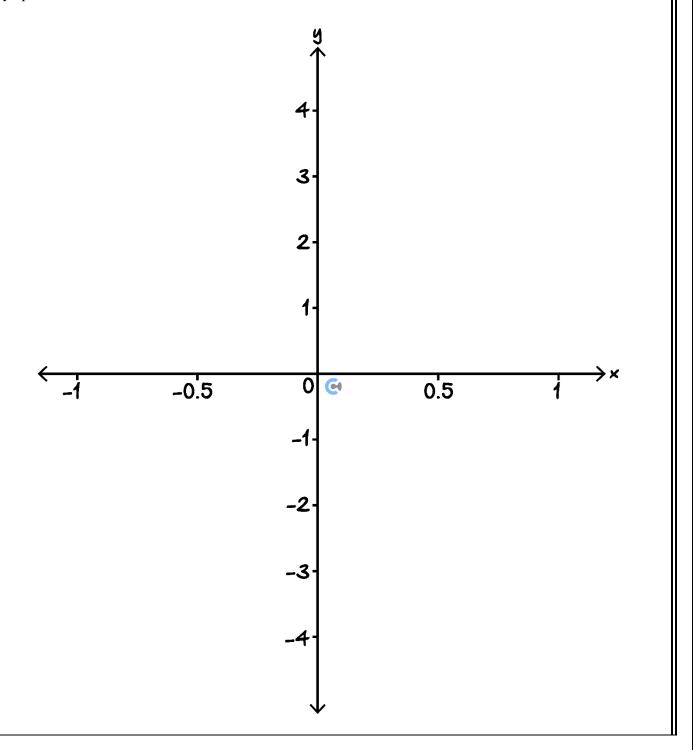
Sketch the graph of $y = -\frac{1}{2} \operatorname{cosec}(x) + 1$ for $-2\pi \le x \le 2\pi$, labelling all stationary points, axes-intercepts and asymptotes.



Your Turn!

Question 7

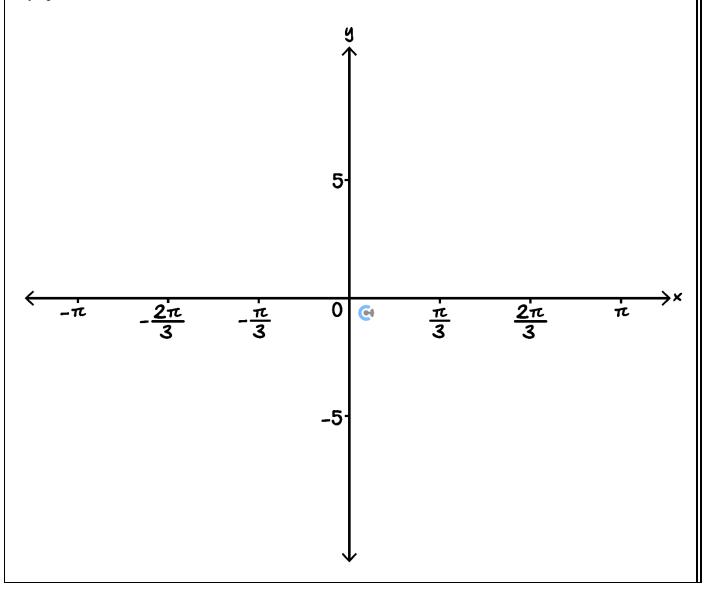
Sketch the graph of $y = 2\sec(\pi(2x - 1))$ for $-1 \le x \le 1$, labelling all stationary points, axes-intercepts and asymptotes.



Now Cot! Remember they have an Inflection Instead of Turning Points!

Question 8

Sketch the graph of $y = 1 - \cot\left(x + \frac{\pi}{2}\right)$ for $-\pi \le x \le \pi$, labelling all stationary points, axes-intercepts and asymptotes.



Section C: Compound and Double Angle Formula

Sub-Section: Compound Angle Formula

Let's look at the compound angle formula!

Compound Angle Formula

sin compound angle formulae.

$$\sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

cos compound angle formulae.

$$\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

tan compound angle formulae.

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x - y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

Using compound angle formula, evaluate $\sin\left(\frac{-\pi}{12}\right)$.

Question 10

Using compound angle formula, evaluate $\cos\left(\frac{5\pi}{12}\right)$.

Sub-Section: Double Angle Formula

What do We Get if x and y Were the Same for the Compound Angle Formula?

Double Angle Formulae

sin double angle formula.

$$\sin(2x) = 2\sin(x)\cos(x)$$

cos double angle formula.

$$cos(2x) = cos2(x) - sin2(x)$$
$$= 2 cos2(x) - 1$$
$$= 1 - 2 sin2(x)$$

tan double angle formula.

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

Question 11 Walkthrough.

Find $\sin(2t)$, where $\cos(t) = -\frac{1}{8}$.

Question 12

Find cos(2t), where $sin(t) = -\frac{1}{8}$.

<u>Calculator Commands:</u> Expanding Trigonometric Identities

Mathematica

⊙ "TrigExpand"

TI-Nspire

• "texpand"

Casio Classpad

• "texpand"

Question 13 Tech-Active.

Expand $\sin(2x + y)$ in terms of x and y.

Section D: Inverse Trigonometric Functions

Sub-Section: Inversing Trigonometric Functions

Discussion

What does the original function need to be for the inverse function to exist?

200

Question 14 Walkthrough.

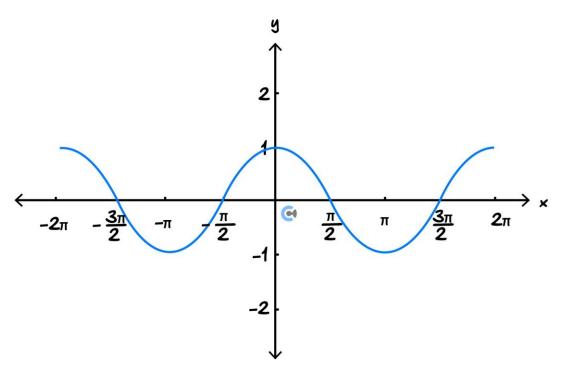
Consider the function sin(x) sketched on the axes below.



- **a.** Shade the part of the graph such that the sin(x) is 1:1.
- **b.** State the domain and range of sin(x) such that the $sin^{-1}(x)$ exists.
- **c.** Hence, state the domain and range of $\sin^{-1}(x)$.

Question 15 Walkthrough.

Consider the function cos(x) sketched on the axes below.



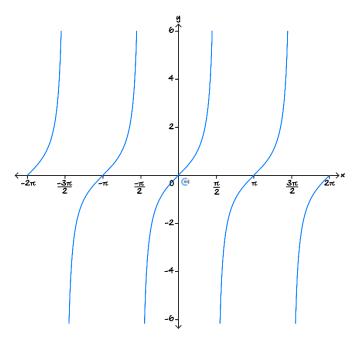
a. Shade the part of the graph such that the cos(x) is 1:1.

b. State the domain and range of cos(x), such that the $cos^{-1}(x)$ exists.

c. Hence, state the domain and range of $\cos^{-1}(x)$.

Question 16 Walkthrough.

Consider the function tan(x) sketched on the axes below.



a. Shade the part of the graph such that the tan(x) is 1:1.

b. State the domain and range of tan(x) such that the $tan^{-1}(x)$ exists.

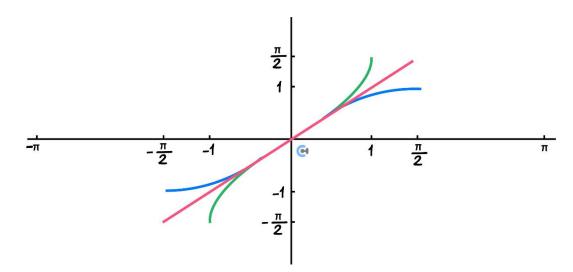
c. Hence, state the domain and range of $tan^{-1}(x)$.

In Summary!

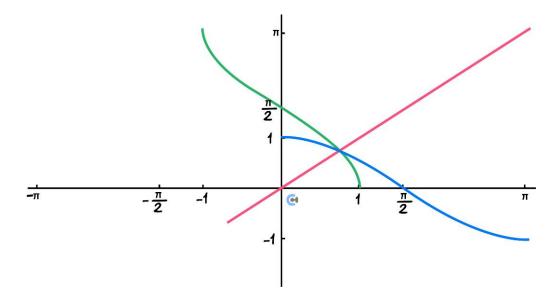
Inverse Trig Functions

Definition

 \rightarrow $\sin^{-1}(x)$



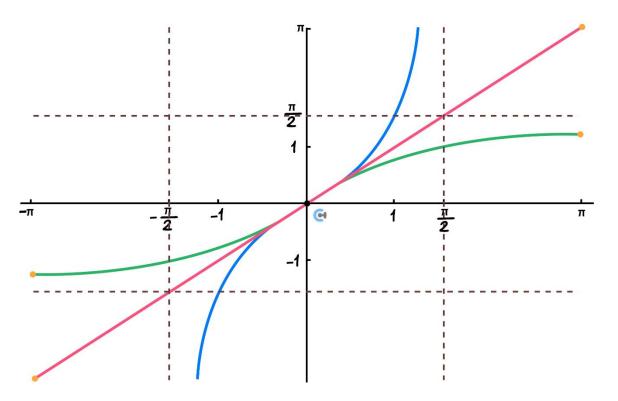
- The domain of the arcsin function = Range of $\sin = [-1,1]$.
- The range = Domain of restricted $\sin = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.
- \rightarrow cos⁻¹(x)



- The domain of the \arccos function = Range of $\cos = [-1,1]$.
- **G** The range = Domain of restricted $\cos = [0, \pi]$.

CONTOUREDUCATION

 \rightarrow tan⁻¹(x)



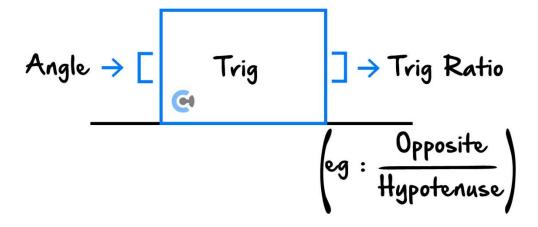
- The domain of the $\arctan function = Range of tan = R$.
- The range = Domain of restricted $\tan = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Sub-Section: Understanding Inverse Trigonometric Functions

What do Inverse Trigonometric Functions Do?

Exploration: Understanding Inverse Trig Functions

We can consider the normal trigonometric function to be the following:



Hence, inverse trigonometric functions can be visualised to perform the following:

- In summary, inverse trig functions have:
 - x-value: _____ = y-value original trig functions.
 - y-value: _____ = x-value of original trig functions.

CONTOUREDUCATION

Question 17

Evaluate the following, or explain why they are undefined.

a. $\arcsin\left(-\frac{1}{2}\right)$

b. $\arccos\left(\frac{3}{\sqrt{3}}\right)$

c. $\arctan\left(\frac{1}{\sqrt{3}}\right)$

NOTE: Inverse functions are **angles**.

NOTE: Consider the range of the inverse trig functions!

Sub-Section: Graphs of Inverse Trigonometric Functions

How do we Sketch Inverse Trigonometric Functions with Transformations?

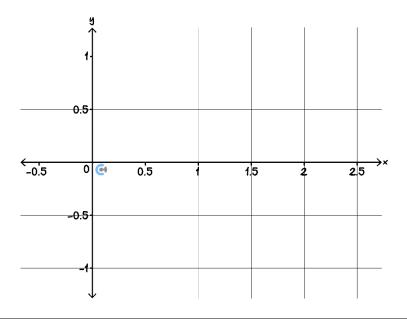
Steps for Graphing General Arcsin and Arccos

- Find the ______ of the function.
 - Restrict inside to be within _____
- Find and plot the ______ of the graph by substituting ends of the domain.
- Find and plot the ______ of the ends. (It is an inflection point.)
- Find and plot the ______ if required.
- Using the previously plotted points as a guide, sketch a ______.

Question 18 Walkthrough.

Following the steps above, sketch:

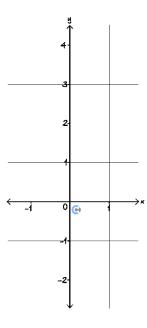
$$y = \frac{1}{2}\arccos(1-x) - \frac{\pi}{4}$$



Question 19

Following the steps above, sketch:

$$y = \frac{\pi}{4} - 2\arcsin x$$



Now arctan Functions!

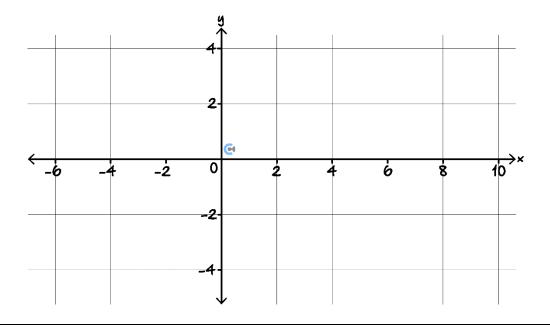
Steps for Graphing General Graphs of arctan

- Find the _____ of the graph and plot them.
 - Ge You can find the asymptotes by finding the range of the arctan function.
 - **G** E.g., the range of $\arctan(x) + \pi$ is $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$, so the asymptotes are $y = \frac{\pi}{2}$ and $y = \frac{3\pi}{2}$.
- Inflection point is given by (h, k).
 - The *x*-value can be found by ______.
 - The *y*-value can be found by _______.
- Find and plot the ______ if required.
- > Using the previously plotted points and asymptotes as a guide, sketch the function.

Question 20 Walkthrough.

Following the steps above, sketch:

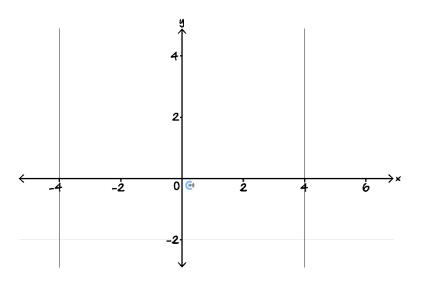
$$y = \arctan(x - \sqrt{3}) - \frac{\pi}{3}$$



NOTE: $tan^{-1}(2) > tan^{-1}(1) = \frac{\pi}{4}$.

Question 21 (3 marks)

Consider the function $y = \arctan(2(x-1)) + \frac{\pi}{2}$. Sketch its graph.



Contour Check

☐ <u>Learning Objective</u>: [3.4.1] - Trigonometric Identities and Solving Exact Values of Reciprocal Functions

Key Takeaways

$$\sin^2(\theta) + \cos^2(\theta) = \underline{\hspace{1cm}}$$

$$1 + \tan^2(\theta) = \underline{\hspace{1cm}}$$

$$1 + \cot^2(\theta) = \underline{\hspace{1cm}}$$

□ Learning Objective: [3.4.2] - Graph Reciprocal Trigonometric Functions

Key Takeaways

- \square If the inside of a reciprocal trig function is nx, it has asymptotes every _____ units.
- □ cosec and sec have the same [shape] / [flip] after every asymptote.
- cot has the [same shape] / [flips] after every asymptote.

Learning Objective: [3.4.3] - Apply compound and Double Angle Formula	a to
Solve Exact Values	

Key Takeaways

- □ To find $\cos\left(\frac{\pi}{8}\right)$, it is more appropriate to use the [double] / [compound] angle formula.
- To find $\sin\left(\frac{7\pi}{12}\right)$, it is more appropriate to use the [double] / [compound] angle formula.
- Sin double angle formula:

$$\sin(2x) = 2\underline{\hspace{1cm}}$$

Cos double angle formula:

$$\cos(2x) = \underline{\hspace{1cm}}$$

Tan double angle formula:

$$tan(2x) =$$

Learning Objective: [3.4.4] - Find Domain, Range and Rule of the Inverse Trigonometric Function	
Key Takeaways	
$ \cos^{-1}(x) $ and $\sin^{-1}(x)$ have the domain	
\Box tan ⁻¹ (x) has the domain	
\Box tan ⁻¹ (x) has an inflection point at	
□ Inverse trig functions output an	
□ To get the inverse of a trig function, we restrict the function's domain so that it is	
Learning Objective: [3.4.5] - Graphing the Inverse Trigonometric Functions	
Key Takeaways	
\Box $\tan^{-1}(x)$ has [horizontal] / [vertical] asymptotes at $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.	
\square An untransformed \sin^{-1} graph has a point of inflection at	

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

