

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½
Advanced Trigonometric Functions [3.4]

Test Solutions

20.5 Marks. 23 Minutes Writing.

Results:

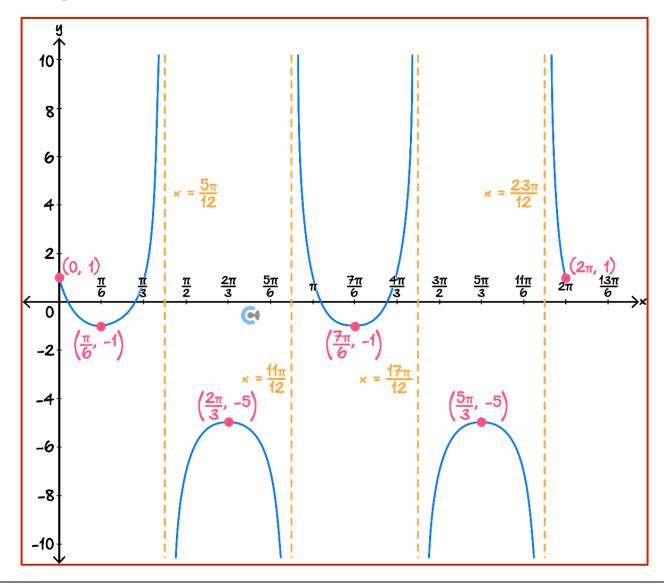
Test Questions	/ 20.5	

Section A: Test Questions (20.5 Marks)

Question 1 (3.5 marks)

Tick whether the following statements are **true** or **false**.

Statement		True	False
a.	Secant graphs have a vertical asymptote whenever sine is equal to 0.		✓
b.	Cotangent graphs have an x -intercept when the tangent is undefined.	✓	
c.	Sec(x), 1 and $tan(x)$ form the sides of a right-angle triangle on a unit circle.	✓	
d.	Compound angle formula for $\cos(2x - y)$ is given by $\cos(2x)\sin(y) + \sin(2x)\cos(y)$.		✓
e. Double angle formula can be used to find the value of $\tan\left(\frac{\pi}{16}\right)$ without technology.		✓	
f.	$\cos^{-1}(x)$ has a range of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. False. That's the range of arcsin.		✓
g.	The range of $\frac{\pi}{2} - \cos^{-1}(2x - 1)$ is given by $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.	✓	


Question 2 (7 marks)

Consider the function $f(x) = -3 + 2 \sec(2x - \frac{\pi}{3})$ for $x \in [0, 2\pi]$.

a. Find the equation(s) of any asymptotes of the function. (2 marks)

$$x = \frac{5\pi}{12}, \frac{11\pi}{12}, \frac{17\pi}{12}, \frac{23\pi}{12}$$

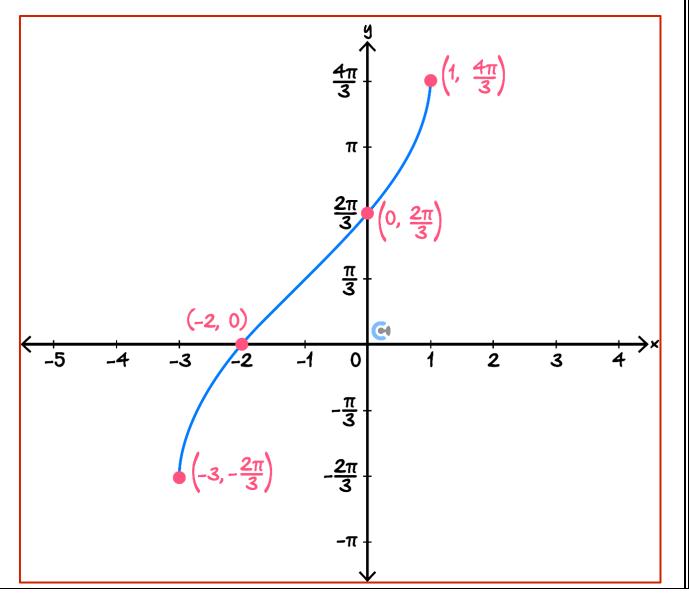
b. Sketch the graph of f on the axes below, labelling all endpoints with their coordinates, and all asymptotes with their equations. (5 marks)

Question 3 (3 marks)

Given that $\sin(x - y) = \frac{3}{5}$, $\cos(x) = \frac{4}{5}$ and $\cos(y) = \frac{5}{13}$, find $\sin(x + y)$.

63

Question 4 (3 marks)


Show why $\arccos(x) + \arccos(-x) = \pi$ for all $x \in [-1, 1]$.

arccos (x) + arccos (-x)= 11	
$\Rightarrow arccos(-x) = \pi - arccos(x)$	
let arrcos(-x) = y	
 \Rightarrow cos (y) = $-x$	
 $\Rightarrow -\cos(y) = \chi \Rightarrow \cos(\pi - y) = \chi$	
TI-y= arcco(n)	
$\Rightarrow arccos(-x) = \pi - arccos(x)$	
 ·	

Question 5 (4 marks)

State the maximal domain and the range of $y = 2 \arcsin\left(\frac{1}{2}(1+x)\right) + \frac{\pi}{3}$ and sketch the graph over its maximal domain, labelling endpoints with their coordinates.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- **What To Do?** Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

