

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Advanced Trigonometric Functions [3.4]

Homework

Admin Info & Homework Outline:

Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2- Pg 18
Supplementary Questions	Pg 19- Pg 34

Section A: Compulsory Questions

<u>Sub-Section [3.4.1]</u>: Trigonometric Identities and Solving Exact Values of Reciprocal Functions

Qu	testion 1	
Eva	aluate the following:	
a.	$\operatorname{cosec}\left(\frac{\pi}{4}\right)$	
b.	$\sec\left(\frac{\pi}{6}\right)$	
c.	$\cot\left(\frac{3\pi}{4}\right)$	

Question 2

Evaluate the following:

a. $\operatorname{cosec}\left(\frac{15\pi}{4}\right)$

b. $\sec\left(-\frac{7\pi}{6}\right)$

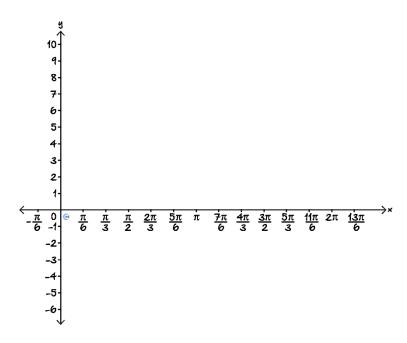
c. $\cot\left(\frac{7\pi}{3}\right)$

Question 3

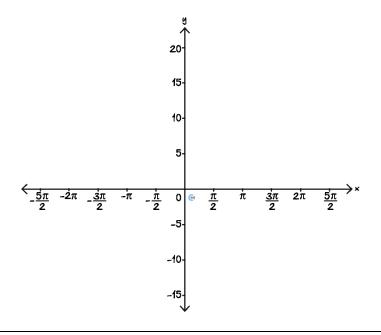
a. If $cos(x) = \frac{2}{3}$ and x is not in the first quadrant, find in simplest surd form, the value of:

$$\frac{\cos(x) - 2\cot(x)}{\tan(x) - 3\sin(x)}$$

b.	Prove the trigonometric identity. Only use the Pythagorean identity.
	$(1 - \tan(x))^2 + (1 + \tan(x))^2 = 2\sec^2(x)$
	·
Sp	pace for Personal Notes


Sub-Section [3.4.2]: Graph Reciprocal Trigonometric Functions

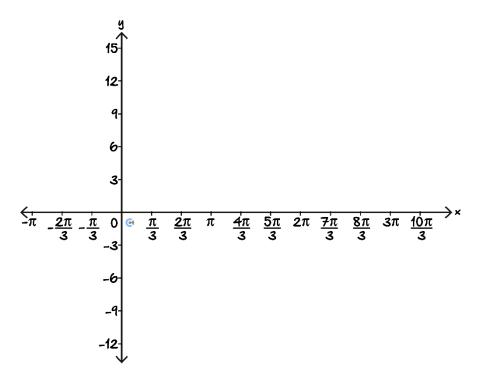
Question 4



Sketch the graphs of the following functions on the axes below. Label all axes intercepts, turning points and asymptotes.

a. $f(x) = \sec(2x) + 1$, for $x \in [0, 2\pi]$.

b. $f(x) = \csc(\frac{x}{2} + 2)$, for $x \in [-2\pi, 2\pi]$.

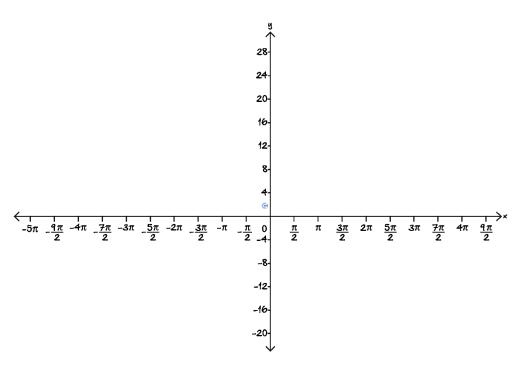


Question 5

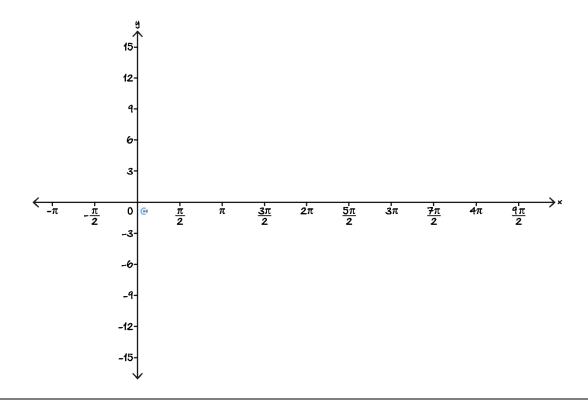
Sketch the graphs of the following functions on the axes below. Label all axes intercepts, turning points and asymptotes.

a. $f(x) = 2 \sec(x - \frac{\pi}{3}) - 1$, for $x \in [0, 3\pi]$.

b. $f(x) = 2 \cot\left(x - \frac{\pi}{3}\right) - 2$, for $x \in [-\pi, 2\pi]$.



Question 6



Sketch the graphs of the following functions on the axes below. Label all axes intercepts, turning points and asymptotes.

a.
$$f(x) = 2\sec\left(\frac{x}{3} - \frac{\pi}{4}\right)$$
, for $x \in [-5\pi, 4\pi]$.

b.
$$f(x) = \cot\left(\frac{x}{2} - \frac{\pi}{4}\right) - \sqrt{3}$$
, for $x \in [0, 4\pi]$.

<u>Sub-Section [3.4.3]</u>: Apply Compound and Double Angle Formula to Solve Exact Values

Question 7	Í
If $sin(x) = \frac{4}{5}$ and $x \in \left[0, \frac{\pi}{2}\right]$, then find the value of $cos(2x)$.	

Qu	estion 8		
Fin	d the exact value of $\cos\left(\frac{7\pi}{12}\right)$.		

Question 9	
Find the exact value of $\sin\left(\frac{\pi}{8}\right)$.	
Space for Personal Notes	

<u>Sub-Section [3.4.4]</u>: Find Domain, Range and Rule of the Inverse Trigonometric Function

Question 10

Suppose $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, f(x) = \cos(2x)$.

a. Find the domain and range of the inverse function, f^{-1} .

b. Hence, define f^{-1} .

Space for Personal Notes

Question 11

Suppose $f: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, f(x) = 2\sin\left(2x - \frac{\pi}{6}\right)$.

a. Find the domain and range of the inverse function, f^{-1} .

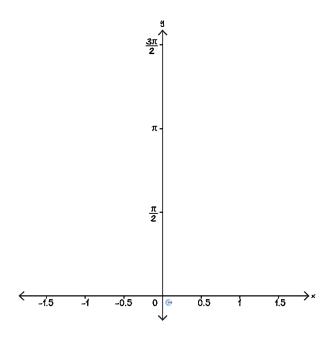
b. Hence, define f^{-1} .

Question 12

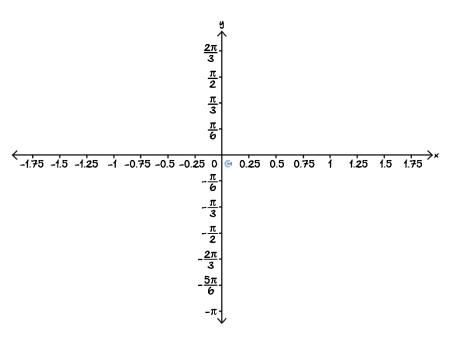
Suppose $f: \left[\frac{3\pi}{4}, \pi\right] \to \mathbb{R}, f(x) = \tan\left(2x + \frac{\pi}{4}\right) + \sqrt{3}$.

a. Find the domain and range of the inverse function, f^{-1} .

	II 1 C C-1	
D.	Hence, define f^{-1} .	
Sp	ace for Personal Notes	


Sub-Section [3.4.5]: Graphing Inverse Trigonometric Functions

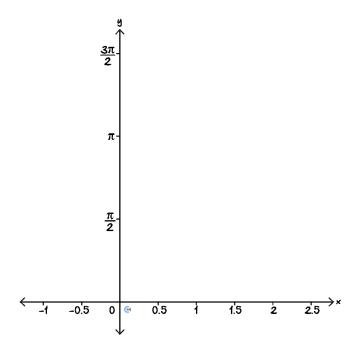
Question 13



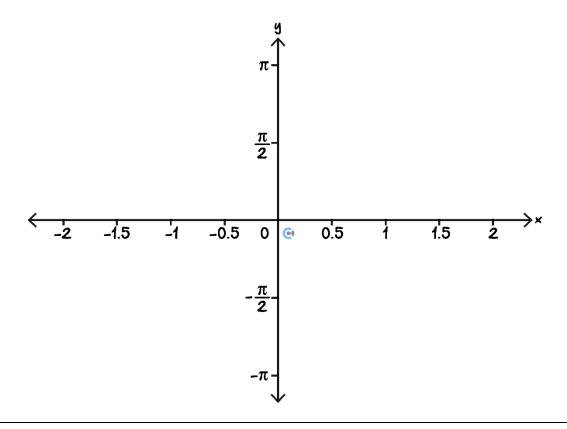
Sketch the graphs of the following inverse trigonometric functions over their maximal domain on the axes below. Label all axes intercepts and endpoints with coordinates, and asymptotes with their equations.

a.
$$f(x) = \arccos(2x) + \frac{\pi}{2}$$
.

b.
$$f(x) = \arctan(2x) - \frac{\pi}{3}$$
.



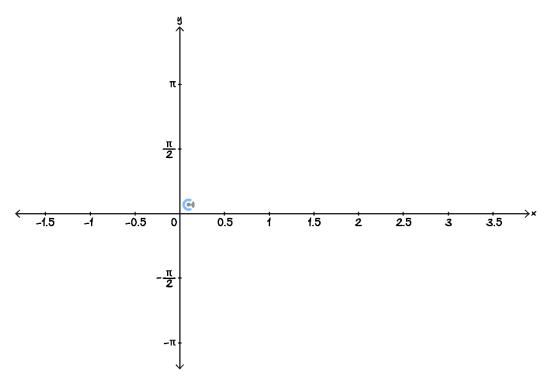
Question 14



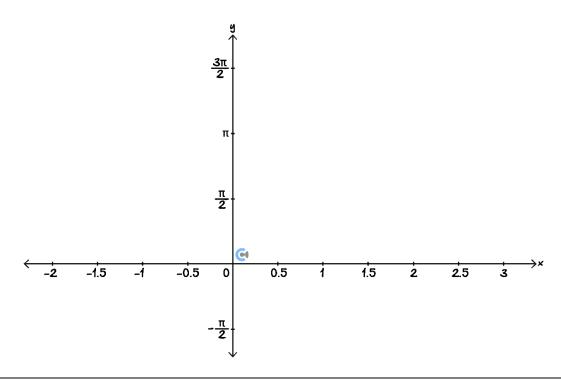
Sketch the graphs of the following inverse trigonometric functions over their maximal domain on the axes below. Label all axes intercepts and endpoints with coordinates, and asymptotes with their equations.

a.
$$f(x) = -\arcsin(x-1) + \frac{\pi}{2}$$
.

b. $f(x) = 2\arccos(2x+1) - \pi$.



Question 15



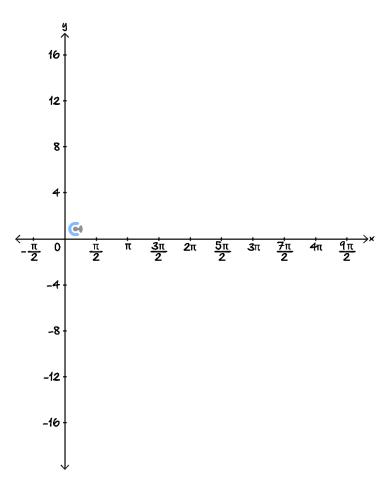
Sketch the graphs of the following inverse trigonometric functions over their maximal domain on the axes below. Label all axes intercepts and endpoints with coordinates and asymptotes with their equations.

a.
$$f(x) = -\frac{1}{2} \arccos\left(\frac{x}{2} - \frac{1}{2}\right) + \frac{\pi}{4}$$
.

b.
$$f(x) = -2 \arctan(3x - \sqrt{3}) + \frac{\pi}{2}$$
.

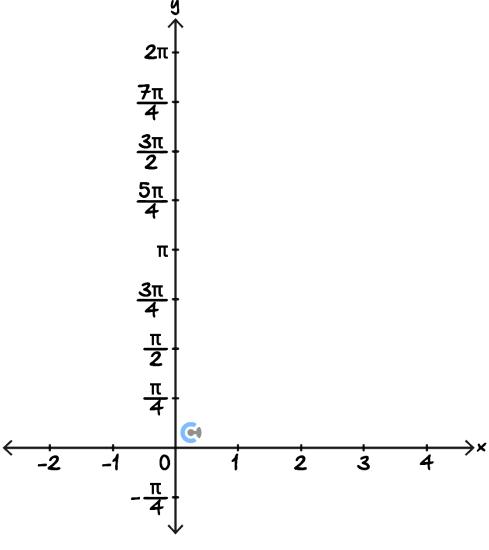
Sub-Section: Final Boss

Question 16


a.	Use a double-angle formula to show that $\cos\left(\frac{3\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$.

b.	Hence, state the value of $\sec\left(\frac{3\pi}{8}\right)$.

c. Sketch the graph of $f(x) = 2\sec\left(\frac{x}{2} - \frac{3\pi}{8}\right)$, for $x \in \left[0, \frac{15\pi}{4}\right]$. Label all axes intercepts and turning points.



d. State the domain and range of the function $g(x) = 2\arccos(x-2)$.

e. Sketch the graph of $y = 2\arccos(x - 2)$ on the axes below. Label all endpoints and points of inflection with coordinates.

f. Use the Pythagorean identity to evaluate $\sin\left(\arccos\left(\frac{1}{\sqrt{3}}\right)\right)$.

Section B: Supplementary Questions

<u>Sub-Section [3.4.1]</u>: Trigonometric Identities and Solving Exact Values of Reciprocal Functions

Qι	nestion 17		
Evaluate the following:			
a.	$\sec\left(\frac{\pi}{4}\right)$		
		-	
		-	
b.	$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$		
		-	
		-	
c.	tan ⁻¹ (1)		
		-	
		-	
Space for Personal Notes			

Quest	ion 1	18

Evaluate the following:

a. $\cot\left(\frac{11\pi}{6}\right)$

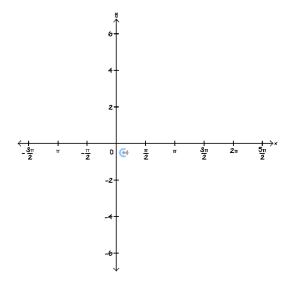
b. cosec $\left(\frac{7\pi}{3}\right)$

c. $\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)$

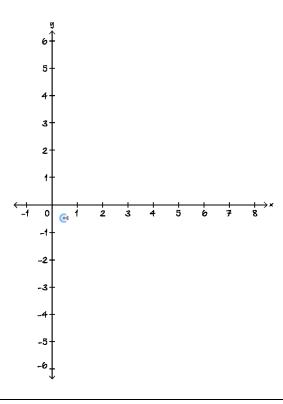
Space for Personal Notes

Question 19	
Prove the identity $(\cot x + \csc x)^2 = \frac{1 + \cos x}{1 - \cos x}$.	
	·
	·

Spa	ace for Personal Notes

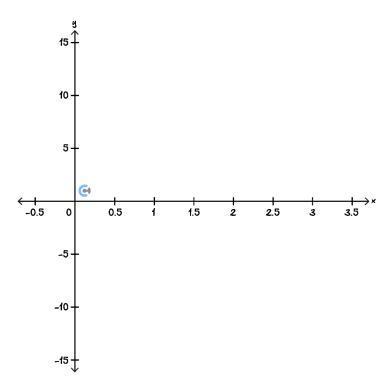


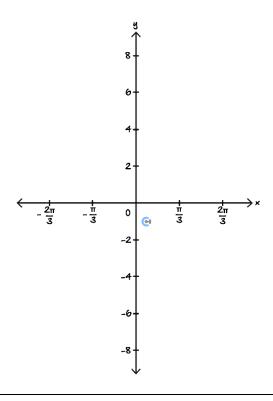
Sub-Section [3.4.2]: Graph Reciprocal Trigonometric Functions


Question 20

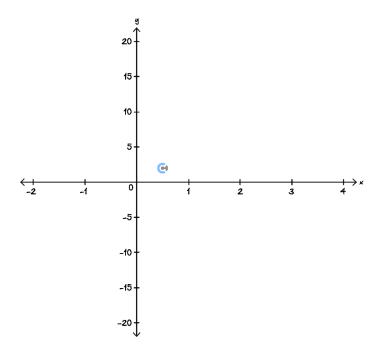
a. Sketch the graph of $y = 2\sec\left(x - \frac{\pi}{2}\right)$ for $-\pi < x < 2\pi$, labelling all stationary points, axes intercepts and asymptotes with their equations.

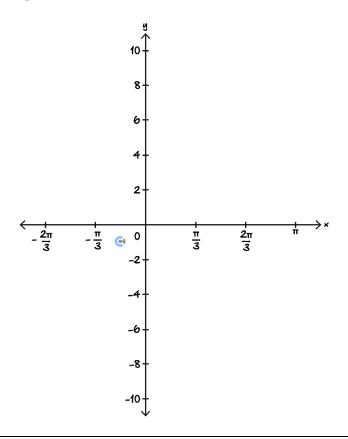
b. Sketch the graph of $\frac{\csc(x)}{2} - \frac{1}{2}$ for $0 < x < 2\pi$, labelling all stationary points, axes intercepts and asymptotes with their equations.




Question 21

a. Sketch the graph of $y = 4\csc\left(7\pi x - \frac{2\pi}{3}\right)$ for $-1 \le x \le 3$, labelling all stationary points, axes intercepts and asymptotes with their equations.


b. Sketch the graph of $y = -\cot(\pi - 3x)$ for $-\frac{2\pi}{3} < x < \frac{2\pi}{3}$, labelling all stationary points, axes intercepts and asymptotes with their equations.


Question 22

a. Sketch the graph of $y = 1 - \sqrt{3} \cot \left(\pi x - \frac{\pi}{3} \right)$ for $-1 \le x \le 3$, labelling all stationary points, axes intercepts and asymptotes with their equations.

b. Sketch the graph of $y = \cot\left(2x - \frac{\pi}{4}\right) + \sqrt{3}$ for $-\frac{\pi}{2} \le x \le \frac{3\pi}{4}$, labelling all stationary points, axes intercepts and asymptotes with their equations.

<u>Sub-Section [3.4.3]</u>: Apply Compound and Double Angle Formula to Solve Exact Values

Question 23			
Use a compound angle formula to evaluate $\sin\left(\frac{5\pi}{12}\right)$.			
	-		
	-		
	-		
	-		
	_		
Question 24	U		
Use a double-angle formula to evaluate $\tan\left(-\frac{\pi}{8}\right)$.			
	-		
	-		
	-		
	-		
	-		

SM12 [3.4] - Advanced Trigonometric Functions - Homework

•	~ =
Onestion	25

Use a compound angle formula to evaluate $\cos\left(\frac{19\pi}{12}\right)$.

Question 26

Given that $cos(x - y) = \frac{7}{25}$ and $cot(x)cot(y) = \frac{4}{3}$, find cos(x + y).

Space for Personal Notes

<u>Sub-Section [3.4.4]</u>: Find Domain, Range and Rule of the Inverse Trigonometric Function

Question 27

Consider the function $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to R: f(x) = \frac{\tan(x)}{3}$.

a. State the domain of $f^{-1}(x)$.

b. State the range of $f^{-1}(x)$.

c. Hence, or otherwise, find the rule of $f^{-1}(x)$.

Question 28

Consider the function $f: \left[-\frac{9\pi}{4}, \frac{3\pi}{4} \right] \to R: f(x) = 2\sin\left(\frac{x}{3} + \frac{\pi}{4}\right) - \sqrt{2}$.

a. State the domain of $f^{-1}(x)$.

b. State the range of $f^{-1}(x)$.

- c. Hence, or otherwise, find the rule of $f^{-1}(x)$.

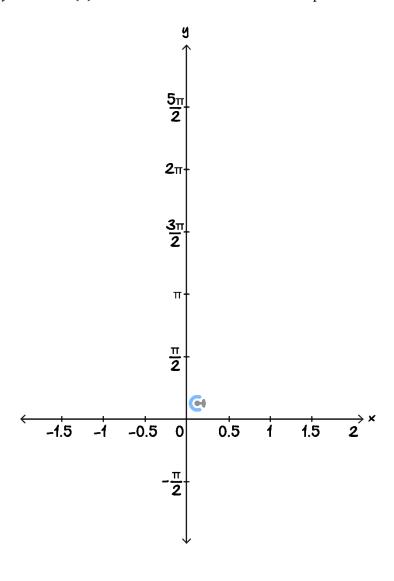
Question 29

Consider the function $f: \left[\frac{5\pi}{3}, \frac{8\pi}{3}\right] \to R: f(x) = \sqrt{5}\cos\left(x + \frac{\pi}{3}\right)$.

- **a.** State the domain of $f^{-1}(x)$.
- _____
- **b.** State the range of $f^{-1}(x)$.

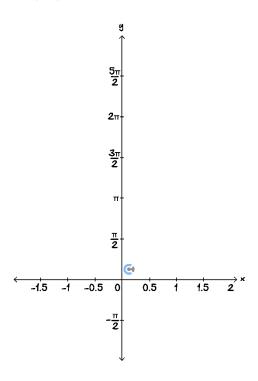
c.	Hence, or otherwise, find the rule of $f^{-1}(x)$.

Space for Personal Notes



Sub-Section [3.4.5]: Graphing Inverse Trigonometric Functions

Question 30



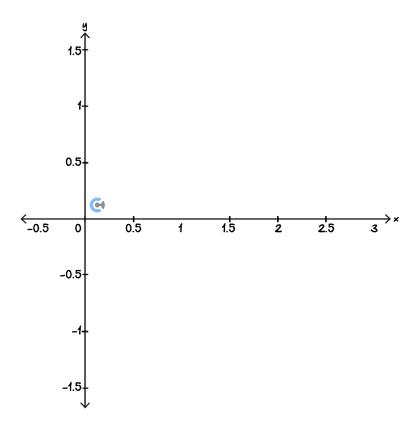
a. Sketch the graph of $y = 2\sin^{-1}(x) + \pi$ on the axes below. Label all endpoints and axes intercepts.

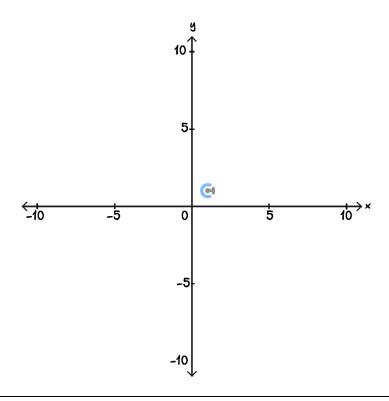
b.

i. Sketch the graph of $y = 2\cos^{-1}(-x)$ below.

ii. What do you notice?

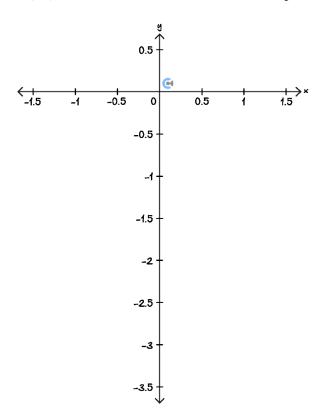
,	 	

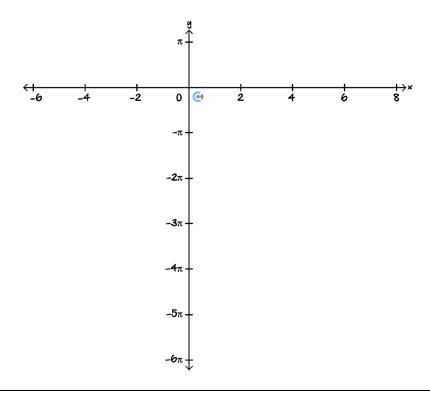

Space for Personal Notes


Question 31

a. Sketch the graph of $y = -\frac{2}{\pi}\cos^{-1}(4-2x) + 1$ on the axes below, labelling all endpoints and axes intercepts.

b. Sketch the graph of $y = -3 \tan^{-1}(2x + 1)$ below, labelling all key points and asymptotes.




Question 32

a. Sketch the graph of $y = \sin^{-1}(2x) - \sqrt{3}$ on the axes below. Label all endpoints.

b. Sketch the graph of $y = \pi \tan^{-1} \left(\frac{x}{2} - 1 \right) - \pi^2$ on the axes below. Label all axes intercepts and asymptotes with their equation.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

