

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Trigonometric Exam Skills [3.3]

Workbook

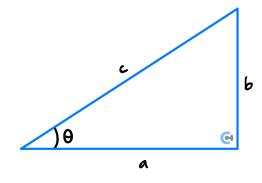
Outline:

Pg 2-20	5	D 24.27
D 24 22	Exam 1 Questions	Pg 34-37
Pg 21-33	5 00 "	D 20 42
	Exam 2 Questions	Pg 38-43
	Pg 2-20 Pg 21-33	Exam 1 Questions

Learning Objectives:

SM12 [3.3.1] - Apply Trigonometry to Solve Problems in 3D

■ SM12 [3.3.2] - Apply Trigonometry to Find the Angle between Planes


Section A: Recap

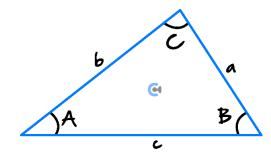
If you were here last week, skip to Section B - Warmup Test.

Definition

Trigonometric Ratios

$$sin(\theta) = \frac{b}{c} = \frac{opposite}{hypotenuse}$$

$$cos(\theta) = \frac{a}{c} = \frac{adjacent}{hypotenuse}$$


$$\tan(\theta) = \frac{b}{a} = \frac{opposite}{adjacent}$$

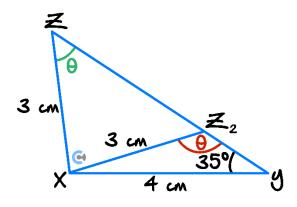
Definition

The Sine Rule

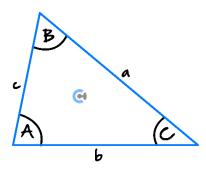
The sine rule states that for a triangle *ABC*:

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

Application of Sine Rule


- We can use it to solve for lengths or angles within the triangle.
- > CASE 1: One side and two angles are given.
 - In CASE 1, the triangle is uniquely defined up to congruence (AAS congruence test).
- > CASE 2: Two sides and a non-included angle are given (the angle is not 'between' the two sides).
 - In CASE 2, there may be two possible triangles.

Question 1


Case 2: Two sides and a non-included angle are given.

Consider a triangle XYZ. Find the magnitude of angle Z in the triangle, given that $Y = 35^{\circ}$, XZ = 3 cm, and XY = 4 cm. Give your answer in degrees, correct to two decimal places.

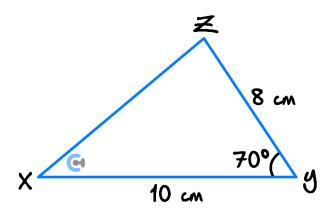
The Cosine Rule

The cosine rule states that for a triangle *ABC*:

$$a^2 = b^2 + c^2 - 2bc \cos(A)$$

$$\cos(A) = \frac{b^2 + c^2 - a^2}{2bc}$$

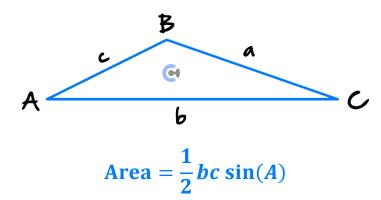
Application of Cosine Rule



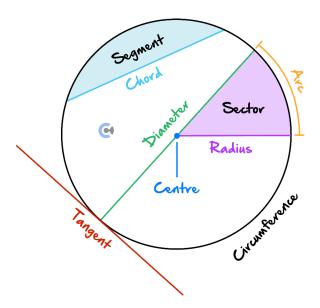
- We can use it to solve for lengths or angles within the triangle.
 - Same as the sine rule in terms of the aim.
 - CASE 1: Three sides are given.
 - CASE 2: Two sides and the included angle are given (the angle IS between the two sides).
- In each case, the triangles are uniquely defined up to congruence.

Question 2

Case 2: Two sides and the included angle are given.


Find the length of XZ using the sine rule, in cm correct to two decimal places.

Area of a Triangle



In terms of two given sides, and the included angle:

Mensuration


- Part of geometry concerned with finding lengths, areas, and volumes of shapes and objects.
- > Circle mensuration is about finding the lengths and areas of different features on circles.

Key Terminology

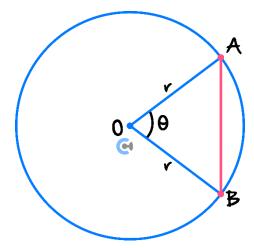
In the diagram below, the circle has a centre.



- Chord = Line segment with endpoints on the circle.
 - Chord passing through the centre is called the diameter.
- Arc = Any curved part of the circle.
 - The shorter arc is called the **minor arc** and the longer is the **major arc**.
- Segment = Every chord divides the interior of a circle into two segments.
 - The smaller segment is called the minor segment and the larger is the major segment.
- **Sector** = Pizza slice. Two radii and an arc define a sector.
- Tangent = Line outside a circle that touches the circle exactly once (and does not pass through it).

Arc Length

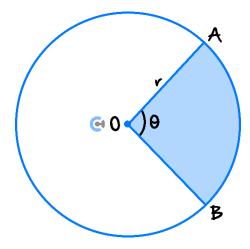
The arc ACB and the corresponding chord AB are said to subtend the angle $\angle AOB$ at the centre of the circle.


$$l = 2\pi r \times \%$$

Where,
$$\%=\frac{\theta^c}{2\pi}=\frac{\theta^\circ}{360}$$

- We simply find the % of circumference.
 - \bullet % is defined by the angle θ divided by the entire rotation.

Chord Length



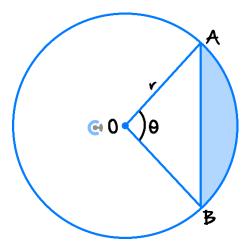
$$AB = 2r\sin\left(\frac{\theta}{2}\right)$$

Area of Sector

$$l = \pi r^2 \times \%$$

Where,
$$\%=rac{ heta^c}{2\pi}=rac{ heta^\circ}{360}$$

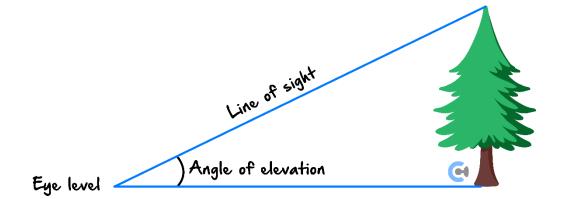
- We simply find the % of the circle area.
 - \bullet % is defined by the angle θ divided by the entire rotation.


Using degrees: Area of sector $=\frac{\pi r^2 \theta^{\circ}}{360}$

Using radians: Area of sector $=\frac{1}{2}r^2\theta^c$

Area of Segment

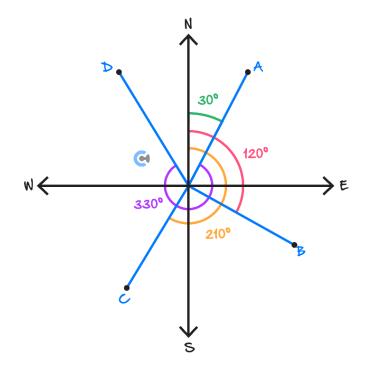
- \blacktriangleright The **area of the segment** is the area of the sector OAB minus the area of the triangle OAB.
- Using the area of a triangle formula, the area of triangle OAB is $\frac{1}{2}r^2\sin(\theta)$.


$$A = \frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin(\theta) = \frac{1}{2}r^2(\theta - \sin(\theta)) \text{ (radians)}$$

$$A = \left(\frac{\theta}{360}\right) \times (\pi r^2) - \frac{1}{2}r^2 \sin(\theta) \text{ (degrees)}$$

Angle of Elevation, Angle of Depression

- Angle of Elevation
 - Ge The angle of elevation is the angle between the horizontal and a direction above the horizontal.


- > Angle of Depression
 - The angle of depression is the angle between the **horizontal** and a **direction** below the horizontal.

Angle of depression

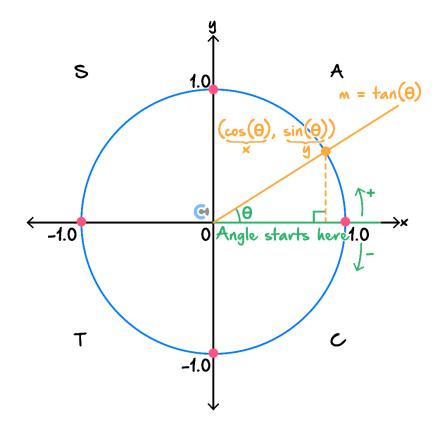
Line of sight

Bearing

The **bearing** is the angle measured from north **in the clockwise direction**.

Radians and Degrees

$$\mathbf{1}^c = \left(\frac{180}{\pi}\right)^\circ$$


$$\mathbf{1}^{\circ} = \left(\frac{\pi}{180}\right)^{c}$$

$$180^{\circ} = \pi^{c}$$

Unit Circle

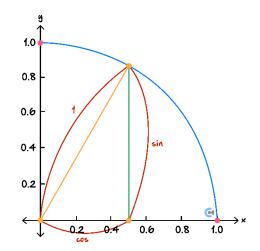
The unit circle is simply a circle of radius 1.

$$\sin(\theta) = y$$

$$\cos(\theta) = x$$

$$tan(\theta) = gradient$$

Period of a Trigonometric Function


Period of
$$sin(nx)$$
 and $cos(nx)$ functions $=\frac{2\pi}{|n|}$

Period of
$$tan(nx)$$
 functions $=\frac{\pi}{|n|}$

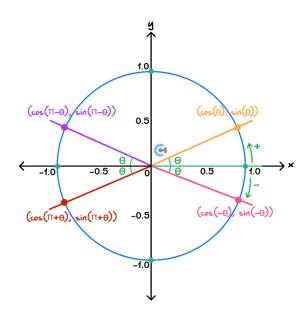
where, n = coefficient of x.

Pythagorean Identities

$$\sin^2(\theta) + \cos^2(\theta) = 1$$

Can be used for finding one trigonometry function by using the other.

The Exact Values Table



x	0 (0 °)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4}$ (45°)	$\frac{\pi}{3}$ (60°)	$\frac{\pi}{2}$ (90°)
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined

Supplementary Relationships

- Simply look at the quadrant to find the correct sign.
 - Second Quadrant $(\pi \theta)$:

$$\cos(\pi - \theta) = -\cos(\theta)$$

$$\sin(\pi - \theta) = +\sin(\theta)$$

$$\tan(\pi - \theta) = -\tan(\theta)$$

G Third Quadrant $(\pi + \theta)$:

$$\cos(\pi + \theta) = -\cos(\theta)$$

$$\sin(\pi + \theta) = -\sin(\theta)$$

$$\tan(\pi + \theta) = + \tan(\theta)$$

• Fourth Quadrant $(-\theta)$:

$$\cos(-\theta) = +\cos(\theta)$$

$$\sin(-\theta) = -\sin(\theta)$$

$$\tan(-\theta) = -\tan(\theta)$$

Particular Solutions

- > Solving trigonometric equations for finite solutions.
- > Steps:
 - Make the trigonometric function the subject.
 - Find the necessary angle for one period.
 - \bullet Solve for x by equating the necessary angles to the inside of the trigonometric functions.
 - Add and subtract the period to find all other solutions in the domain.

Question 3

Solve the following equations for x over the domains specified.

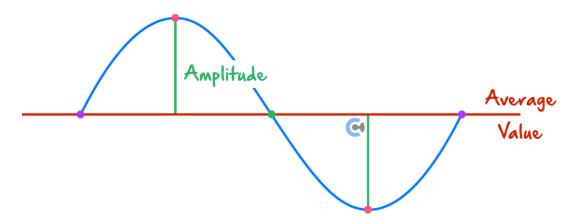
a.
$$\sin\left(x - \frac{\pi}{2}\right) = -\frac{1}{2} \text{ for } x \in [-\pi, \pi].$$

b.
$$2\cos\left(2x + \frac{\pi}{6}\right) + 1 = 0 \text{ for } x \in [0, 2\pi].$$

General Solutions

Definition

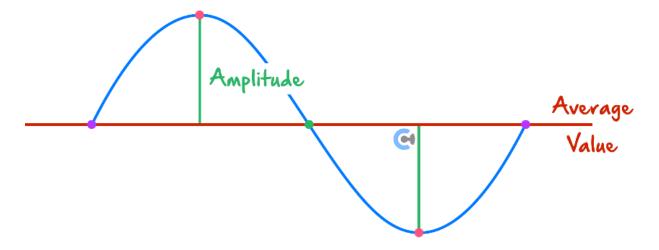
- Finding infinite solutions to a trigonometric equation.
- > Steps:
 - Make the trigonometric function the subject.
 - Find the necessary angle for one period.
 - \bullet Solve for x by equating the necessary angles to the inside of the trigonometric functions.
 - \bullet Add Period \cdot n where $n \in \mathbb{Z}$.


Question 4

Find the general solutions to the following equation:

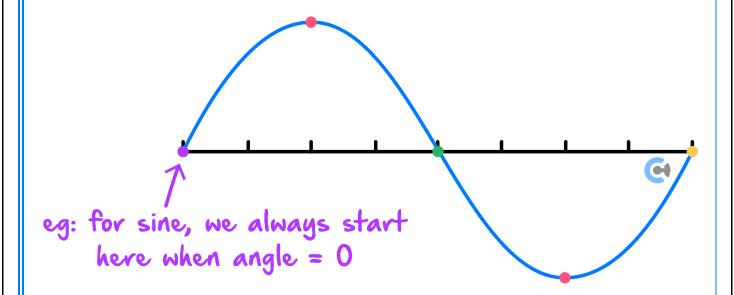
$$2\sin\left(-2x + \frac{\pi}{4}\right) = \sqrt{2}$$

Amplitude, Period, and Average Value

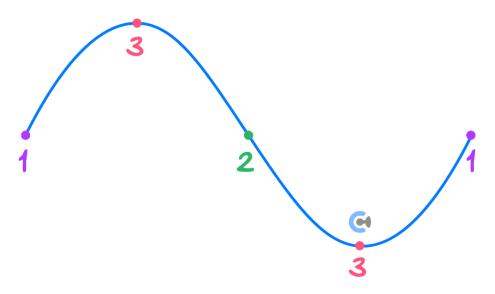

Consider the sign of our graph

- Period = $\frac{2\pi}{n}$
- ightharpoonup Average Value = k

Steps for Sketching Transformations of sin and cos Functions


- ldentify:
 - Amplitude.
 - Period.
 - Mean Value.
 - Positive/Negative Shape.

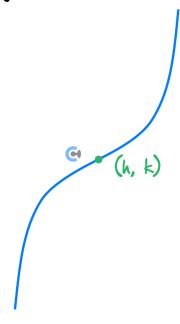
And create a "mini version" of the graph you are about to draw.



Consider the sign of our graph

- ightharpoonup Start plotting the function from when the angle = 0.
 - Geometric For instance, for $\sin\left(2x \frac{\pi}{3}\right)$, start from $x = \frac{\pi}{6}$.
 - Why?

Draw the start and end of the periods, and plot the halves (turning points).

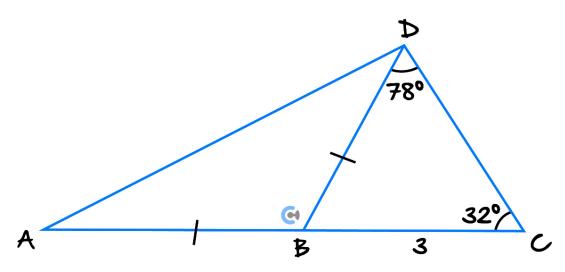


- Find any *x*-intercepts.
- Join all the points!

Steps for Sketching tan Functions

- Identify:
 - The period = $\frac{\pi}{n}$.
- Find the vertical asymptotes by solving for the angle $=\frac{\pi}{2}$.
- Find other vertical asymptotes within the domain by adding the period to answer from the previous step.
 - Geometric For instance, for $\tan \left(2x \frac{\pi}{3}\right)$, solve $2x \frac{\pi}{3} = \frac{\pi}{2}$ for x.
- Plot the inflection point (h, k) (Midpoint of the two vertical asymptotes).
 - x-value of inflection point = x-value, which makes an angle = 0.
 - y-value of inflection point = Vertical translation of the function.

eg:
$$tan(x-h)+k$$



- Find any x-intercepts.
- Sketch a "cubic-like" shape.

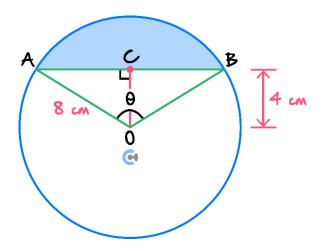
Section B: Warm Up Test (19 Marks)

Question 5 (6 marks) **Tech-Active.**

ACD is a triangle and B is a point on AC. The triangle ABD is an isosceles triangle, and the length BC = 3 cm, angle $BCD = 32^{\circ}$, and the angle $BDC = 78^{\circ}$.

				_	
a.	Find the length BD. R	ound your answer to	2 decimal	places. (2 marks)

b.	Find the length AD. Round your answer to 2 decimal places. (2 marks)
----	--



c.	Find the area of triangle ACD. Round your answer to 2 decimal places. (2 marks)
----	---

Question 6 (8 marks)

Find the following:

a. The length of chord AB. (2 marks)

b. The length of the major arc AB. (2 marks)

c. The area of the major sector *AOB*. (2 marks)

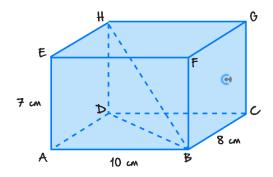
		I
А	The area of the minor segment formed by chord AB. (2 marks)	
u.	The area of the fillion segment formed by chord AD. (2 marks)	
		-
		-
		-
		-
1		
Sp	ace for Personal Notes	
<u>i</u> 1		
il		

Question 7 (5 marks)
Consider the equation below:
$-2\sin\left(\frac{\pi}{3} - \frac{x}{2}\right) + \sqrt{3} = 0$
a. Solve for the value(s) of x . (4 marks)
b. Solve for the value(s) of x where $x \in [-4\pi, \pi]$. (1 mark)
Space for Personal Notes

Sub-Section: Problems in 3D

Problems in 3D

- > 3D trigonometry problems can be broken down into ______ problems.
- Main Tools:
 - 1. Pythagoras' theorem.
 - 2. SOH CAH TOA.
 - **3.** The sine and cosine rule.


Space	for	Personal	Notes
-------	-----	----------	--------------

Question 8 Walkthrough. Tech Active.

ABCDEFGH is a cuboid. Find:

a. The distance *DB*, correct to two decimal places.

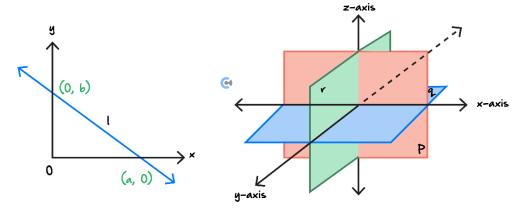
b. The distance *HB*, correct to two decimal places.

 \mathbf{c} . The magnitude of angle HBD, in degrees correct to two decimal places.

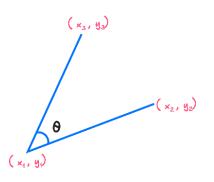
d. The magnitude of angle HBA, in degrees correct to two decimal places.

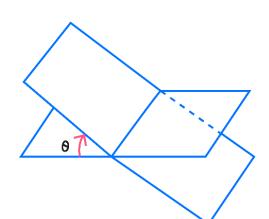
Question 9 Tech-Active.
There is a tree (vertical) that stands at the corner of a square paddock of side 100 m. Given that the angle of elevation of the top of the tree from the diagonally opposite corner is 25°, what is the angle of elevation of the top of the tree from the other corners? Give your answer correct to two decimal places.
Space for Personal Notes

Sub-Section: Angle Between Planes



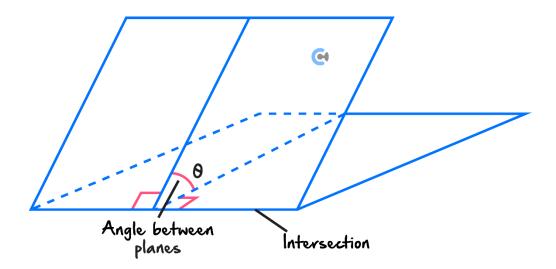
How can we visualise planes?




Exploration: Visualising Planes and Lines

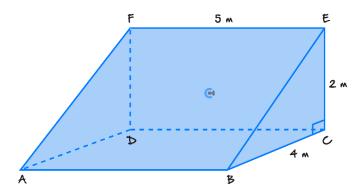
- In maths, a plane is a flat, two-dimensional surface that extends indefinitely.
- Think of it as an infinitely large rectangle.
- Just like how lines are defined as one-dimensional on a two-dimensional surface, planes are usually two-dimensional surfaces defined on a three-dimensional space.

- If you want to construct an ______ between two _____, they have to intersect at a common _____.
- Similarly, if we want to construct an ______ between two _____, they have to intersect at a common _____.



Angles Between Planes

When finding the angle between two planes, it is important to consider where the planes _____ and the _____ that this intersection forms.



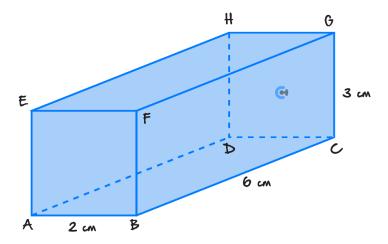
The angle between the two planes is equal to the ______ between the _____ in ____ to the _____ to the _____ between the planes.

Question 10 Walkthrough. Tech-Active.

Consider the wedge shown. Find, correct to one decimal place, the angles between:

a. The line BE at the plane ABCD.

b. The line BF and the plane ABCD.



c. Planes ABCD and ABEF.		
d. The lines BD and BE .		

Question 11

The diagram shows a cuboid.

Find, correct to two decimal places, the angle between:

a. The line AG and the plane ABCD.

b. The plane ABGH and the plane ABCD.

c. The line *AC* and the plane *ADEH*.

d. The line AG and the plane $ADEH$.	
e. The plane $ACGE$ and the line AH .	
f. The plane <i>ADGF</i> and the plane <i>BCHE</i> .	
	
Space for Personal Notes	

Section C: Exam 1 Questions (16 Marks)

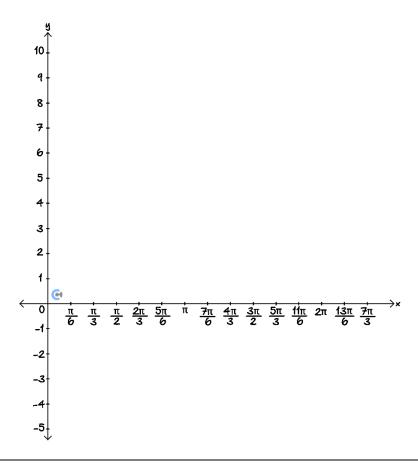
	ver facing north is on a cliff $50 m$ above sea level, and sights two ships. One ship is located on a bear W , and another is located on a bearing of $N025E$. The angles of depression of the ships are 37° and 50°	
spectiv	ely. Find in metres correct to one decimal place, the distance between the two ships.	
		-
		-
		-
		-
		-
		-
		-
4	as Developed Notes	
ace i	or Personal Notes	

Question 13 (3 marks)

It is known that $cos(a) = -\frac{3}{5}$ where a is a second quadrant angle.

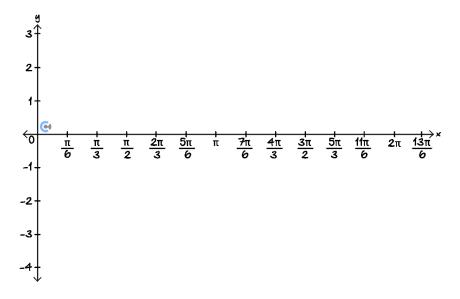
Evaluate the following:

a. $\cos(\pi + a)$. (1 mark)


b. $\sin\left(\frac{\pi}{2} - a\right)$. (2 marks)

Space for Personal

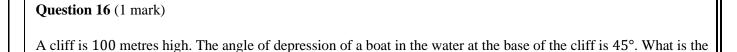
Question 14 (3 marks)


Sketch the graph of $f(x) = 3 \tan(\frac{\pi}{3} - x) + 3$ for $x \in [0, 2\pi]$ on the axis below, labelling all asymptotes, intercepts and endpoints with their coordinates.

Space for Personal

Question 15 (7 marks)

a. Sketch the graph of $f(x) = -2\sin(\frac{\pi}{2} - 2x) - 1$ for $x \in [0, 2\pi]$ on the axis below, labelling all intercepts and endpoints with their coordinates. (3 marks)


b. Solve f(x) = -2 for $x \in [0, 2\pi]$. (3 marks)

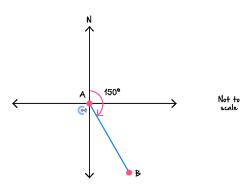
c. Hence, solve $f(x) \le -2$ for $x \in [0, 2\pi]$. (1 mark)

Section D: Exam 2 Questions (26 Marks)

distance between the boat and the top of the cliff?

- **A.** 70.7 metres
- **B.** 100 metres
- **C.** 141.4 metres
- **D.** 200 metres

Question 17 (1 mark)


The angles of elevation of top and bottom of a flag at a distance of 30 m is 45° and 30° respectively. What is the height of the flag AB?

- **A.** 10.54 metres
- **B.** 10 metres
- C. 20 metres
- **D.** 12.68 metres

Space for Personal

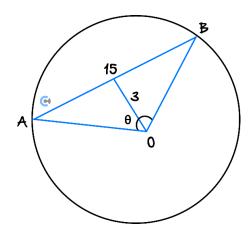
Question 18 (1 mark)

A helicopter flies on a bearing of 150° from A to B.

What is the bearing of A from B?

- **A.** 30°
- **B.** 150°
- **C.** 210°
- **D.** 330°

Question 19 (1 mark)


A poster is on top of a building. Rajesh is standing on the ground at a distance of 50 m from the building. The angles of elevation to the top of the poster and bottom of the poster are 45° and 30° respectively. What is the height of the poster?

- **A.** $\frac{50(\sqrt{3}-1)}{\sqrt{3}} m$
- **B.** $50\sqrt{3} \ m$
- **C.** $\frac{25}{\sqrt{3}}$ m
- **D.** None of these.

Space for Personal

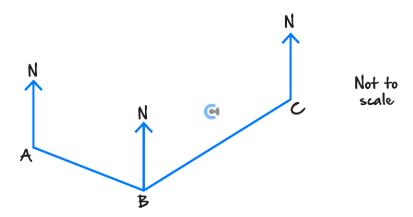
Question 20 (8 marks)

Find:

a. The radius of the circle. (2 marks)

b. The length of the minor arc AB. Round your answer correct to 2 decimal places. (2 marks)

c. The area of the major sector *AOB*. Provide your answer correct to 2 decimal places. (2 marks)



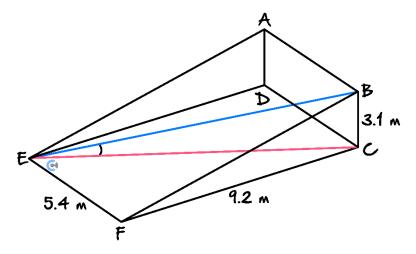
d.	The area of the minor segment formed by chord AB. (2 marks)
Qu	estion 21 (4 marks)
A r Thi	man standing on a cliff observes a ship at an angle of depression 30°, approaching the shore just beneath him. ree minutes later, the angle of depression of the ship is 60°. How soon will it reach the shore?

Question 22 (6 marks)

A ship sails 6 km from A to B on a bearing of 121°. It then sails 9 km to C. The size of angle ABC is 114°.

a. What is the bearing of C from B? (1 mark)

b. Find the distance AC. Give your answer correct to the nearest kilometre. (2 marks)


c. What is the bearing of A from C? Give your answer correct to the nearest degree. (3 marks)

Question 23 (4 marks)

The diagram below shows a wedge in which rectangle *ABCD* is perpendicular to rectangle *CDEF*. The distances are as indicated on the diagram. From the diagram find, correct to two decimal places:

a.	The distance <i>BE</i> .
b.	The angle CEB.

Contour Check

	Learning Objective: [3.3.1] - Apply trigonometry to solve problems in 3D					
	Key Takeaways					
	3D trigonometry problems can be broken down into problems.					
	Main Tools:					
	1. Pythagoras' theorem.					
	2. SOH CAH TOA.					
	3. The sine and cosine rule.					
	Learning Objective: [3.3.2] - Apply trigonometry to find the angle between planes					
	Key Takeaways					
An	gles Between Planes					
	When finding the angle between two planes, it is important to consider where the planes and the that this intersection forms.					
	The angle between the two planes is equal to the between the in that are to the					

_____ between the planes.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

