

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Trigonometric Exam Skills [3.3]

Homework Solutions

Admin Info & Homework Outline:

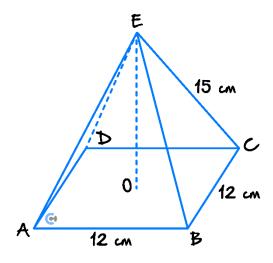
Student Name	
Questions You Need Help For	
Compulsory Questions	Pg 2- Pg 21

Section A: Compulsory Questions

Sub-Section [3.3.1] and [3.3.2]: Apply Trigonometry to Solve Problems in 3D and Find the Angle between Planes

Question 1

A square pyramid ABCDE stands on level horizontal ground. The vertex of the pyramid is at E. The points A, B, C, D are the corners of a square of side 12 cm, whose diagonals intersect at the point O. Each of the sloping edges of the pyramid has a length of 15 cm.



a. Calculate the length *OC*.

By Pythagoras, $OC^2 = 6^2 + 6^2 \implies OC = 6\sqrt{2}$.

CONTOUREDUCATION

b. Calculate the volume of the pyramid. (Recall $V = \frac{1}{3} \times \text{base} \times \text{height}$)

 $OE^2 = EC^2 - OC^2$ $OE^2 = 225 - 72 = 153 \implies OE = \sqrt{153} = 3\sqrt{17}$.

Base area = 12 × 12 = 144. Therefore $V=\frac{1}{3}\times 144\times 3\sqrt{17}=144\sqrt{17}$

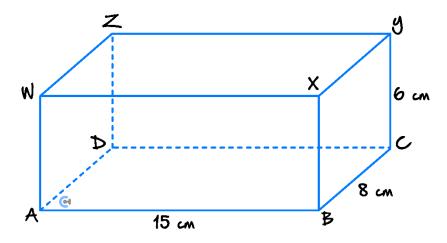
 ${f c.}$ Calculate the total surface area of the pyramid.

Use Pythagoras to find the height of the triangular face. $h^2=15^2-6^2=189\implies h=3\sqrt{21}.$

Then face area = $\frac{1}{2} \times 12 \times 3\sqrt{21} = 18\sqrt{21}$.

Surface area = $144 + 4 \times 18\sqrt{21} = 144 + 72\sqrt{21}$.

The figure shows a cuboid *ABCDWXYZ* standing on level horizontal ground. The lengths of *AB*, *BC* and *CY* are 15 *cm*, 8 *cm* and 6 *cm*, respectively.



a. Find the length of AY.

$$AC = \sqrt{15^2 + 8^2} = 17.$$

Then $AY = \sqrt{6^2 + 17^2} = 5\sqrt{13}$

b. Calculate the angle AY makes with the ground, correct to two decimal places.

$$tan(\theta) = \frac{6}{17} \implies \theta \approx 19.44^{\circ}$$

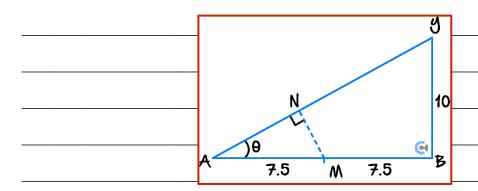
c. Determine the area of the triangle *ABY*.

 $AY^{2} = AB^{2} + BY^{2}$ $BY = \sqrt{25 \times 13 - 15^{2}} = 10$ $Area \ ABY = \frac{1}{2} \times 10 \times 15 = 75$

The point M is the midpoint of AB and the point N lies on AY.

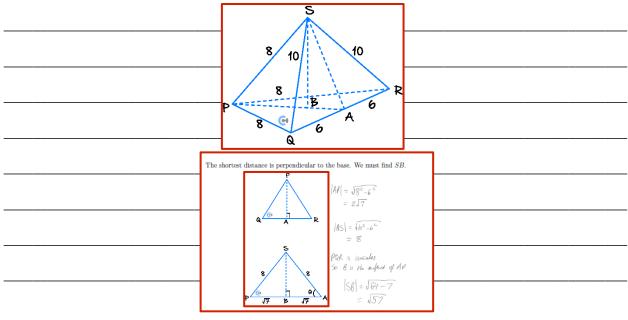
d. The point M is the midpoint of AB and the point N lies on AY. Calculate the length of MN, given that MN is perpendicular to AY. Give your answer correct to two decimal places.

 $\tan(\theta) = \frac{10}{15} = \frac{2}{3} \implies \theta = 33.69^{\circ}.$ Then $\sin(\theta) = \frac{NM}{7.5} \implies NM = 4.16$ cm



A pyramid PQRS has a triangular horizontal base PQR, where PQ = PR = 8 m and RQ = 12 m. The vertex of the pyramid S lies directly above the level of PQR so that SQ = SR = 10 m and SP = 8 m.

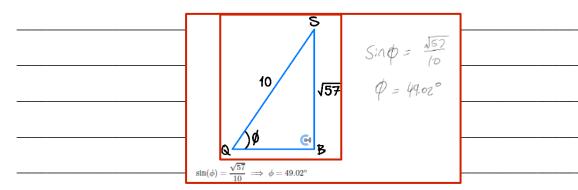
a. Show that the shortest distance of S from the base PQR is $\sqrt{57}$ m.



- **b.** Calculate, in degrees correct to two decimal places, the acute angle between:
 - i. The plane SQR and the plane PQR.

The angle θ in the diagram above. $\cos(\theta) = \frac{\sqrt{7}}{8} \implies \theta = 70.69^{\circ}$

ii. The edge SQ and the plane PQR.



c.	Determine,	as an	exact	surd.	the	shortest	distance	of	P	from	the	plane	SO	R.
••	Determine,	as an	CAuct	buru,	uic	SHOTTEST	distance	OI		110111	uic	pranc	υų	

HINT: Compute the volume of the pyramid in two different ways.

Area of
$$\triangle PQR = \frac{1}{2}|QR||AP| = \frac{1}{2} \times 12 \times 2\sqrt{7} = 12\sqrt{7}$$

Volume of Pyramid = $\frac{1}{3}$ (Base Area) × Height
$$= \frac{1}{3} \times 12\sqrt{7} \times \sqrt{57}$$

$$= 4\sqrt{2}\sqrt{57}$$

Area of
$$\triangle SQR = \frac{1}{2}|QR||AS| = \frac{1}{2}\times 12\times 8 = 48$$

Volume of Pyramid is also equal to:

$$\frac{1}{3}(\text{Area of base }SQR)\times(\text{Height from }P\text{ to }SQR)$$

$$\implies \frac{1}{3}\times 48\times h = 4\sqrt{2}\sqrt{57}$$

$$16h = 4\sqrt{2}\sqrt{57}$$

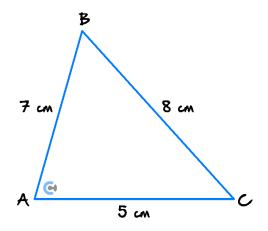
$$h = \frac{1}{4}\sqrt{399}$$

Sub-Section: Exam 1 Questions

Question 4

The figure below shows a triangle ABC where the following information is given.

$$|AB| = 7 \ cm, |BC| = 8 \ cm, |AC| = 5 \ cm.$$



a. Find the size of the angle $\angle ACB$ in degrees.

Let
$$\angle ACB = \theta$$
,
 $\cos(\theta) = \frac{8^2 + 5^2 - 7^2}{80} = \frac{40}{80} = \frac{1}{2}$.
Therefore $\theta = 60^{\circ}$

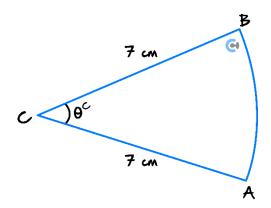
b. Hence, determine as an exact surd the area of the triangle *ABC*.

$$Area = \frac{1}{2} \times 5 \times 8 \sin(60^\circ) = 20 \times \frac{\sqrt{3}}{2} = 10\sqrt{3}$$

CONTOUREDUCATION

Question 5

The figure below shows a circular sector ABC of radius 7 cm subtending an angle θ radius at C. Given that the perimeter of the sector is equal to the area of the sector, find the value of θ in radians.



Perimiter =
$$14 + 7\theta$$

Area = $\frac{1}{2} \times 7^2\theta = \frac{49}{2}\theta$.
Solve $14 + 7\theta = \frac{49}{2}\theta \implies \frac{35}{2}\theta = 14 \implies 35\theta = 28$.
 $\theta = \frac{28}{35} = \frac{4}{5}$.

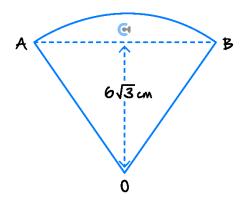
Prove the identity
$$\frac{\cos\theta}{1-\sin\theta} = \frac{1+\sin\theta}{\cos\theta}$$
.

We proceed as follows:
$$\begin{split} \frac{\cos\theta}{1-\sin\theta} &= \frac{\cos\theta}{1-\sin\theta} \times \frac{1+\sin\theta}{1+\sin\theta} \\ &= \frac{\cos\theta+\sin\theta\cos\theta}{1-\sin^2\theta} \\ &= \frac{\cos\theta(1+\sin\theta)}{\cos^2\theta} \\ &= \frac{1+\sin\theta}{\cos\theta} \end{split}$$

ONTOUREDUCATION

Question 7

The figure above shows a badge in the shape of a circular sector OAB, centred at O. The triangle OAB is equilateral and its perpendicular height is $6\sqrt{3}$ cm.



a. Find the length of *OA*.

$$\sin\left(\frac{\pi}{3}\right) = \frac{6\sqrt{3}}{OA} \implies OA = \frac{2 \times 6\sqrt{3}}{\sqrt{3}} = 12$$

- **b.** Determine in terms of π :
 - i. The area of the badge.

$$\text{Area} = \frac{1}{2}r^2\theta = 12 \times \frac{1}{2} \times \frac{\pi}{3} = 2\pi$$

ii. The perimeter of the badge.

Length of arc $AB = r\theta = 12 \times \frac{\pi}{3} = 4\pi$. Therefore perimeter $= 24 + 4\pi$.

Consider the function $f(x) = 2 \sin\left(2x - \frac{\pi}{3}\right) + 1$.

a. Find the general solution to f(x) = 0.

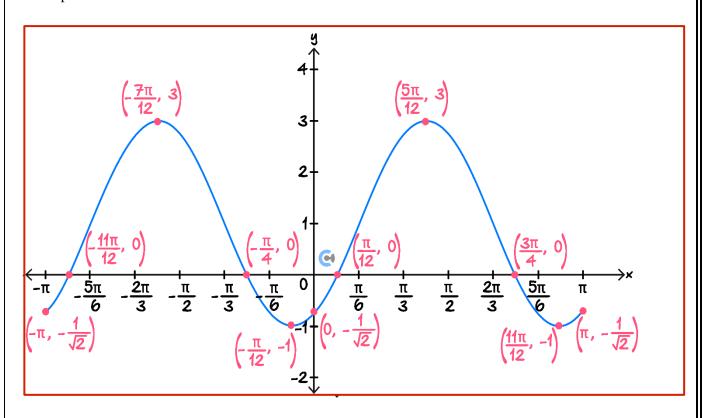
$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{1}{2}$$

$$2x - \frac{\pi}{3} = -\frac{5\pi}{6} + 2n\pi, -\frac{\pi}{6} + 2n\pi$$

$$2x = -\frac{\pi}{2} + 2n\pi \quad \text{or} \quad 2x = \frac{\pi}{6} + 2n\pi$$

$$x = -\frac{\pi}{4} + n\pi \quad \text{or} \quad x = \frac{\pi}{12} + n\pi, n \in \mathbb{Z}.$$

b. Sketch the graph of y = f(x) for $x \in [-\pi, \pi]$ on the axes below. Label all axes intercepts, turning points and endpoints with coordinates.



CONTOUREDUCATION

c. Find the values of x for which f(x) > 2.

We solve $f(x)=2 \implies 2\sin\left(2x-\frac{\pi}{3}\right)=1.$ $\sin\left(2x-\frac{\pi}{3}\right)=\frac{1}{2}$ $2x-\frac{\pi}{3}=\frac{\pi}{6},\frac{5\pi}{6}$ $2x=\frac{\pi}{2},\frac{7\pi}{6}$ $x=\frac{\pi}{4},\frac{7\pi}{12}$ Then by the shape of the graph we see that f(x)>2 for $x\in\left(-\frac{3\pi}{4},-\frac{5\pi}{12}\right)\cup\left(\frac{\pi}{4},\frac{7\pi}{12}\right)$

d. The function f(x) has an equivalent expression $f(x) = 2\cos\left(2x + \frac{a\pi}{6}\right) + 1$, where 0 < a < 12. State the value of a.

Note that $\sin\left(2x - \frac{\pi}{3}\right) = \cos\left(2x - \frac{\pi}{2} - \frac{\pi}{3}\right) = \cos\left(2x - \frac{5\pi}{6}\right)$ Then $-\frac{5\pi}{6} + 2\pi = \frac{7\pi}{6}$ a = 7

Sub-Section: Exam 2 Questions

Question 9

A building is 60 metres tall. From a certain point, the angle of elevation to the top of the building is 30°. How far is the point from the building?

- A. $60\sqrt{3}$ metres.
- **B.** $45\sqrt{3}$ metres.
- C. $30\sqrt{3}$ metres.
- **D.** $40\sqrt{3}$ metres.

Question 10

If $tan(\theta) = -\frac{3}{4}$ and $\theta \in [0,2\pi]$, then $cos(\theta)$ is equal to:

- **A.** $\frac{3}{5}$ or $-\frac{3}{5}$.
- **B.** $\frac{4}{3}$ or $-\frac{4}{3}$.
- C. $-\frac{3}{5}$ or $-\frac{4}{5}$.
- **D.** $\frac{4}{5}$ or $-\frac{4}{5}$.

The solutions of the equation

$$2\cos\left(2x - \frac{\pi}{3}\right) + 1 = 0$$

are:

- **A.** $x = \frac{\pi(6k-2)}{6}$ or $x = \frac{\pi(6k-3)}{6}$, for $k \in \mathbb{Z}$.
- **B.** $x = \frac{\pi(6k-2)}{6}$ or $x = \frac{\pi(6k+5)}{6}$, for $k \in \mathbb{Z}$.
- C. $x = \frac{\pi(6k-1)}{6}$ or $x = \frac{\pi(6k+2)}{6}$, for $k \in \mathbb{Z}$.
- **D.** $x = \frac{\pi(6k-1)}{6}$ or $x = \frac{\pi(6k+3)}{6}$, for $k \in \mathbb{Z}$.

Question 12

Let $cos(x) = -\frac{3}{5}$ and $sin^2(y) = \frac{25}{169}$, where $x \in \left[\frac{\pi}{2}, \pi\right]$ and $y \in \left[\frac{3\pi}{2}, 2\pi\right]$.

The value of sin(x) + cos(y) is:

- **A.** $\frac{8}{65}$
- **B.** $-\frac{112}{65}$
- C. $\frac{112}{65}$
- **D.** $-\frac{8}{65}$

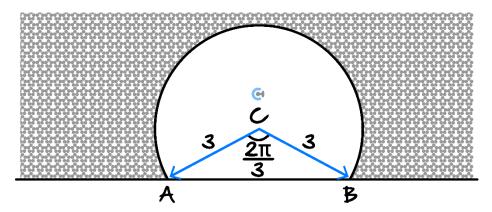
Ryan's line of sight, while looking at a bird on a tree top, makes a 45° angle of elevation. He walks 240 metres towards the tree to observe the bird closely, thus causing his line of sight to make a 60° angle of elevation. How far was Ryan from the tree initially?

- A. $\frac{240\sqrt{3}}{\sqrt{3}-1}$ metres.
- **B.** $\frac{240}{\sqrt{3}-1}$ metres.
- C. $\frac{240}{\sqrt{3}}$ metres.
- **D.** $240\sqrt{3}$ metres.

Question 14

The figure below shows the cross-section of a railway tunnel, modelled as the major segment of a circle, centre at C and radius of 3 m.

The angle $\angle ACB$ is $\frac{2\pi}{3}$ radians.



a. Find the exact length of AB.

$$AB = 2 \times 3 \times \sin\left(\frac{\pi}{3}\right) = 3\sqrt{3}$$

b. Determine the area of the triangle *ACB*.

Area = $\frac{1}{2} \times 3 \times 3 \times \sin\left(\frac{2\pi}{3}\right) = \frac{9\sqrt{3}}{4}$

c. Find the cross-sectional area of the tunnel.

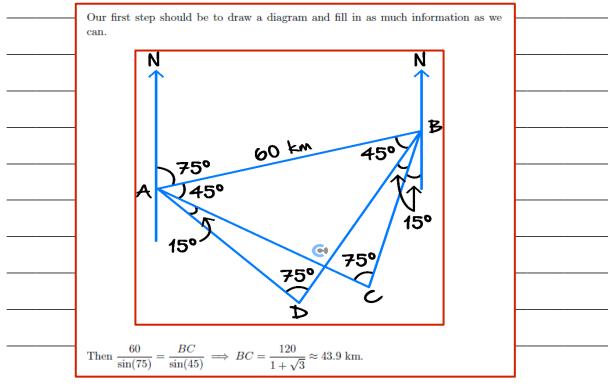
Area = major sector + triangle

$$Area = \frac{1}{2} \times 9 \times \frac{4\pi}{3} + \frac{9\sqrt{3}}{4}$$
$$= 6\pi + \frac{9\sqrt{3}}{4}$$

The distance between the town of Alphaville (A) and the town of Betaville (B) is 60 km. Betaville is on a bearing of 75° from Alphaville.

The village of Cappal (C) is on a bearing of 120° from Alphaville and on a bearing of 195° from Betaville. The village of Deltan (D) is on a bearing of 135° from Alphaville and on a bearing of 210° from Betaville.

- **a.** Find, correct to one decimal place where appropriate, the distance between:
 - i. Betaville and Cappal.



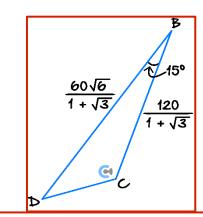
ii. Betaville and Deltan.

$$\frac{60}{\sin(75)} = \frac{BD}{\sin(60)} \implies BD = \frac{60\sqrt{6}}{1+\sqrt{3}} \approx 53.8 \text{ km}$$

iii. Cappal and Deltan.

Draw a diagram and use the cosine rule.

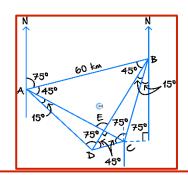
 $|DC| = \sqrt{|DB|^2 + |BC|^2 - 2|DB||BC|\cos(15^\circ)} = 120 - 60\sqrt{3} \approx 16.1$



b. Find the bearing of Deltan from Cappal.

A diagram and noting that DEC is a right angled isosceles triangle will help us get the bearing as

$$360 - (60 + 45) = 255^{\circ}$$



The population of koalas in a particular location varies according to the rule:

$$n(t) = 1500 + 500 \cos\left(\frac{\pi t}{4}\right)$$

where n is the number of koalas and t is the number of months after 1 March 2015.

a. Find the period and amplitude of the function n.

Period = 8 and amplitude = 500

b. Find the maximum and minimum populations of koalas in this location.

Max = 2000 and Min = 1000

c. Find n(2).

n(2) = 1500

d. Over the 10 months from 1 March 2015, find the fraction of time when the population of koalas in this location was less than n(2).

We find the population is greater than or equal to n(2)=1500 for $t\in[0,2]\cup[6,10]$. So the fraction of time the population is less than n(2) is $\frac{4}{10}=\frac{2}{5}$.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs). ■
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

