

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

# VCE Specialist Mathematics ½ Trigonometry II [3.2]

Workbook

# Outline:

Pg 15-22

## Introduction to Circular Functions

- Pg 2-9 Radians and Degrees
- Unit Circle
- Period
- Pythagorean Identities
- Exact Values

Supplementary Relationships

# Particular and General Solutions

- Particular Solutions
- General Solutions

# Graphs of Sine and Cosine

Pg 23-29

- Basics of Sine and Cosine Functions
- **Graphing Sine and Cosine Functions**

## **Graphs of Tangent**

Pg 30-33

- Basics of Tangent Graphs
- Graphing Tangent Functions

# **Learning Objectives:**

Pg 10-14





- SM12 [3.2.2] Find Particular and General Solutions
- SM12 [3.2.3] Graph Sine, Cosine and Tangent functions





# Section A: Introduction to Circular Functions

# Sub-Section: Radians and Degrees

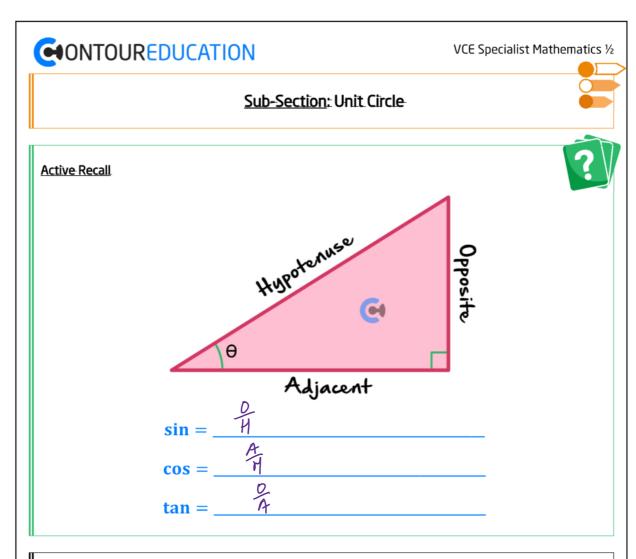


Radians and Degrees

$$\mathbf{1}^c = \left(\frac{180}{\pi}\right)^{\mathbf{0}}$$

$$1^{o} = \left(\frac{\pi}{180}\right)^{c}$$

$$180^{\circ} = \pi^{c}$$


# Question 1

**a.** Find  $\left(\frac{\pi}{4}\right)^c$  in degrees.

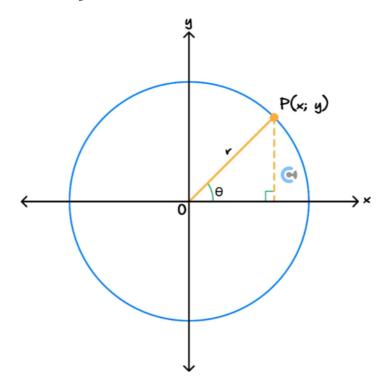


**b.** Find 12° in radians.





Space for Personal Notes




# What is a unit circle, and how do we use it?

# A

# **Exploration:** Unit Circle

- The unit circle is simply a circle of radius
- ► Angles are measured from the right side of x æsis
- It can be divided into four quadrants:



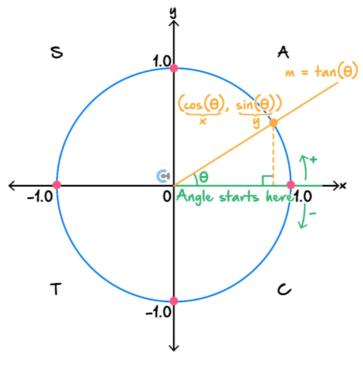
- We can use the elementary definition of the trigonometric functions.
- Select the option below!

$$sin(\theta) = [X \ Value, Y \ Value, Gradient]$$

$$cos(\theta) = [XValue, YValue, Gradient]$$

$$tan(\theta) = [X Value, Y Value, Gradient]$$






VCE Specialist Mathematics  $\frac{1}{2}$ 



# Unit Circle

The unit circle is simply a circle of radius 1.



$$sin(\theta) = y$$

$$\cos(\theta) = x$$

$$tan(\theta) = gradient$$

<u>Discussion:</u> For which quadrant is cos, sin and tangent positive?









# Sub-Section: Period

Discussion: For what angle does cos, sin and tangent repeats itself?





Period of a Trigonometric Function

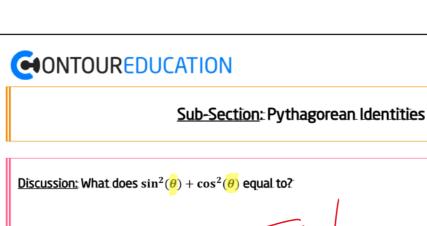


period of 
$$sin(nx)$$
 and  $cos(nx)$  functions =  $\frac{2\pi}{|n|}$ 

period of 
$$tan(nx)$$
 functions =  $\frac{\pi}{|n|}$ 

where n = coefficient of x.

## Question 2


Find the period of each of the following trigonometric functions:

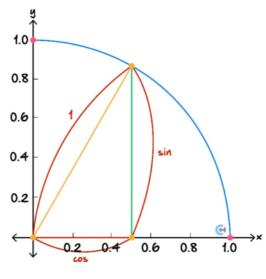
**a.** 
$$p(x) = \tan(2x)$$

**b.** 
$$q(x) = \cos\left(\frac{5}{2}x + \frac{\pi}{3}\right)$$

Period = 
$$\frac{2\pi}{5}$$
 =  $2\pi \times \frac{2}{5}$  =  $4\pi$ 






VCE Specialist Mathematics  $\frac{1}{2}$ 





# Pythagorean Identities





 $\sin^2(\theta) + \cos^2(\theta) = 1$ 

> Can be used for finding one trigonometry function by using the other.

Space for Personal Notes

SM12 [3.2] - Trigonometry II - Workbook

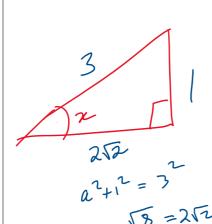
7



# How can we use it?



# Question 3 Walkthrough.


Find the value of sin(x) given that  $cos(x) = \frac{1}{4}$  and x is the first quadrant.

$$\sin^{2}(x) + \cos^{2}(x) = 1$$
  
 $\sin^{2}(x) + (\frac{1}{4})^{2} = 1$   
 $\sin^{2}(x) + (\frac{1}{4})^{2} = 1$ 

**NOTE:** Always show the rejection by the quadrant.

# Question 4

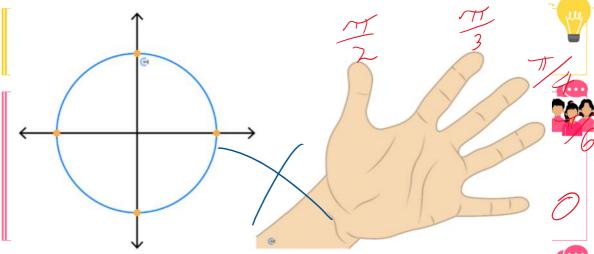
Find the value of cos(x) given that  $sin(x) = \frac{1}{3}$  and x is the second quadrant. Sin2 (x) + co3 (x)=1












# Exact values are super important to remember!



# The Exact Values Table

| х         | <b>0</b> ( <b>0</b> °) | $\frac{\pi}{6}~(30^\circ)$ | $\frac{\pi}{4} (45^{\circ})$ | $\frac{\pi}{3}$ (60°) | $\frac{\pi}{2}$ (90°) |
|-----------|------------------------|----------------------------|------------------------------|-----------------------|-----------------------|
| sin(x)    | 0                      | $\frac{1}{2}$              | $\frac{\sqrt{2}}{2}$         | $\frac{\sqrt{3}}{2}$  | 1                     |
| $\cos(x)$ | 1                      | $\frac{\sqrt{3}}{2}$       | $\frac{\sqrt{2}}{2}$         | $\frac{1}{2}$         | 0                     |
| tan(x)    | 0                      | $\frac{1}{\sqrt{3}}$       | 1                            | $\sqrt{3}$            | Undefined             |





$$sin(\theta) = \frac{\sqrt{(the\ number\ of\ fingers\ below)}}{2}$$

 $cos(\theta) = \frac{\sqrt{(the number of fingers above)}}{2}$ 

SM12 [3.2] - Trigonometry II - Workbook



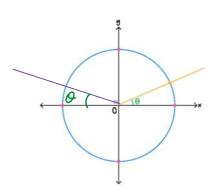
tan 0 =

fingers below
fingers above



Section B: Symmetry

# Sub-Section: Supplementary Relationships



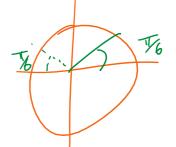

What does reflection in the y-axis look like?



Exploration: Reflection in y-axis

Consider the unit circle.




- Reflect the angle around the y-axis on the unit circle above.
- $\blacktriangleright$  What is the angle in terms of  $\theta$ ?

W-0

**Question 5** 

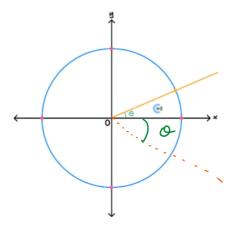
Consider the angle  $\frac{\pi}{6}$ .

Find the angle after the reflection in the y-axis.



T-6=5T



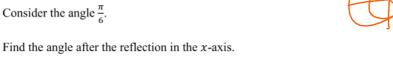



# What does a reflection in the x-axis look like?



# Exploration: Reflection in x-axis

Consider the unit circle.




- Reflect the angle around the *x*-axis on the unit circle above.
- What is the angle in terms of  $\theta$ ?

2-1-0 0 -0

# Question 6

Consider the angle  $\frac{\pi}{6}$ .

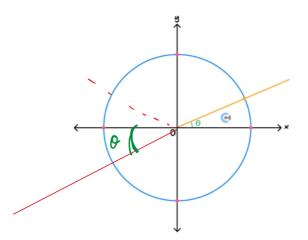


**NOTE:** Simply make the angle negative!








VCE Specialist Mathematics  $\frac{1}{2}$ 

# What does reflection in both axes look like?



# **Exploration:** Reflection on Both Axes

Consider the unit circle.



- Reflect the angle around both axes on the unit circle above.
- $\blacktriangleright$  What is the angle in terms of  $\theta$ ?

11+0

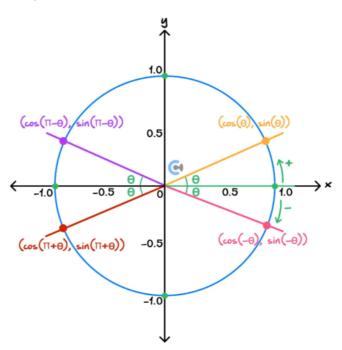
# Question 7

Consider the angle  $\frac{\pi}{6}$ .

Find the angle after the reflection in both axes.

T+ T = 7T

SM12 [3.2] - Trigonometry II - Workbook


12

# Let's summarise!



# **Supplementary Relationships**





- Simply look at the quadrant to find the correct sign.
  - Second Quadrant  $(\pi \theta)$ :

$$\cos(\pi - \theta) = -\cos(\theta)$$

$$\sin(\pi - \theta) = +\sin(\theta)$$

$$\tan(\pi - \theta) = -\tan(\theta)$$

• Third Quadrant  $(\pi + \theta)$ :

$$\cos(\pi + \theta) = -\cos(\theta)$$

$$\sin(\pi + \theta) = -\sin(\theta)$$

$$\tan(\pi + \theta) = + \tan(\theta)$$

SM12 [3.2] - Trigonometry II - Workbook

1:



 $\bullet$  Fourth Quadrant  $(-\theta)$ :

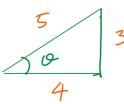
$$\cos(-\theta) = +\cos(\theta)$$

$$\sin(-\theta) = -\sin(\theta)$$

$$\tan(-\theta) = -\tan(\theta)$$

# Try the following question!




**Question 8** 

If  $sin(\theta) = -0.6$  where  $\theta$  is a third quadrant angle, evaluate the following.  $\Theta = -\frac{3}{5}$ 

$$\sin \theta = -\frac{3}{5}$$

a.  $sin(\pi + \theta)$ 

$$= -\sin(0) = -(-0.6)$$
  
= 0.6



**b.**  $cos(\pi + \theta)$ 

$$= - los(0) = -(-\frac{4}{5})$$
  
 $= \frac{4}{5}$ 

$$\cos \theta = -\frac{4}{5}$$

$$-ve :$$

$$3^{d} \text{ quadrate}$$

c.  $tan(\pi - \theta)$ 

$$=$$
  $-\tan \theta$ 

$$\tan \theta = \pm \frac{3}{4}$$

NOTE: The aim of the question is to convert the angle to theta!







# Section C: Particular and General Solutions

# **Sub-Section: Particular Solutions**

Active Recall: Period of Trigonometric Function



period of 
$$sin(nx)$$
 and  $cos(nx)$  functions =  $\frac{1}{|n|}$ 

period of  $tan(nx)$  functions =  $\frac{1}{|n|}$ 

where 
$$n = \text{coefficient of } x$$
.

<u>Discussion:</u> How often would the solution to  $sin(x) = \frac{1}{2}$  repeat?



Every period



# **Particular Solutions**

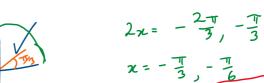


- Solving trigonometric equations for finite solutions.
- Steps:
  - Make the trigonometric function the subject.
  - Find the necessary angle for one period.
  - Solve for x by equating the necessary angles to the inside of the trigonometric functions.
  - Add and subtract the period to find all other solutions in the domain.





# Question 9 Walkthrough.


Period = 27 = T

Solve the following equations for x over the domains specified.

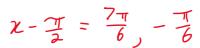
 $2\sin(2x + \pi) - \sqrt{3} = 0$  for  $x \in [0, 2\pi]$ 

$$0 \sin (2x+7r) = \frac{\sqrt{3}}{2}$$

$$(2) \quad B.A = \frac{\pi}{3}$$



Add period  $x = \frac{2\pi}{3}, \frac{5\pi}{6}$ 


x= 57 117 6

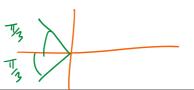
**Question 10** 

period = 2T

Solve the following equations for x over the domains specified.

**a.** 
$$\sin\left(x - \frac{\pi}{2}\right) = -\frac{1}{2}$$
 for  $x \in [-\pi, \pi]$ 




$$\chi = \frac{10\gamma}{6}, \frac{2\pi}{6}$$

$$\lambda = \frac{5\pi}{3} \left( \frac{\pi}{3} \right)$$

**b.** 
$$2\cos\left(2x + \frac{\pi}{6}\right) + 1 = 0$$
 for  $x \in [0, 2\pi]$ 

**b.** 
$$2\cos\left(2x + \frac{\pi}{6}\right) + 1 = 0 \text{ for } x \in [0, 2\pi]$$

$$VO3\left(2x + \frac{\pi}{6}\right) = -\frac{\pi}{2}$$



$$2x + \frac{7}{6} = \frac{7}{11} + \frac{7}{3}, \quad 7 - \frac{7}{3}$$

$$= \frac{47}{3}, \quad \frac{27}{3}$$

$$2x = \frac{47}{3} - \frac{7}{6}, \quad \frac{27}{3} - \frac{7}{6}$$

$$\frac{3\pi}{6}$$

$$2 = \frac{7\pi}{6}$$

$$3\pi$$

Question 11 Walkthrough.

$$\tan\left(x + \frac{\pi}{3}\right) - \sqrt{3} = 0 \text{ for } x \in [0, 2\pi]$$

 $\int \tan (x + T_3) = \sqrt{3}, \quad B.H = T_3$   $\chi + T_3 = T_3$ 

Discussion: Why do we need to find one angle only for tangents?



period

## **Question 12**

Solve the following equations for x over the domains specified. Period = T

$$\sqrt{3}\tan\left(x + \frac{\pi}{4}\right) + 1 = 0 \text{ for } x \in (0, 3\pi)$$

for 
$$x$$
 over the domains specified.

$$\sqrt{3} \tan \left(x + \frac{\pi}{4}\right) + 1 = 0 \text{ for } x \in (0, 3\pi)$$

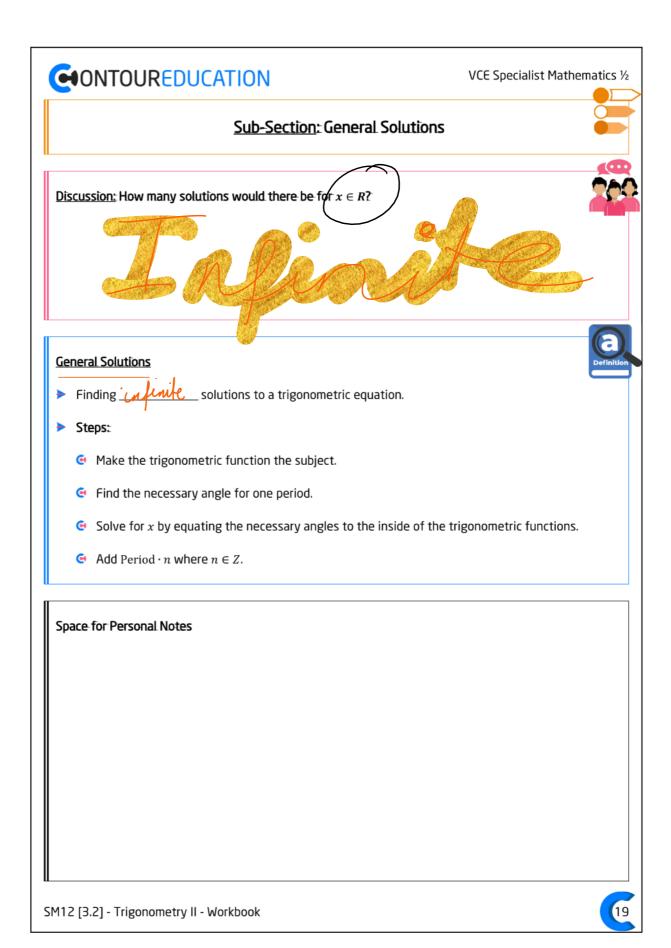
$$+ OA \left(x + T_4\right) = -\frac{1}{\sqrt{3}}$$

$$= T_6$$

$$\chi + T_4 = \frac{5\pi}{6}$$

$$\chi = \frac{10\pi}{12} - \frac{3\pi}{12}$$

$$\varkappa = \frac{7\pi}{12} V$$


$$x = \frac{7\pi}{12}$$

$$x = \frac{7\pi}{12}$$

$$x = \frac{19\pi}{12}$$

$$x = \frac{31\pi}{12}$$

$$\chi = \frac{3|+}{12}$$





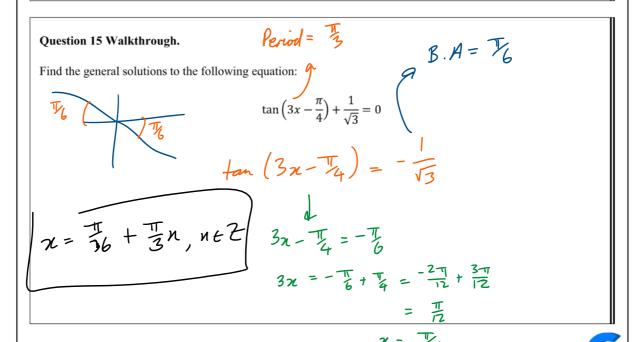
## Question 13 Walkthrough.

Find the general solutions to the following equations:  $2 \sin \left(2x + \frac{\pi}{2}\right) - 1 = 0$   $3 \sin \left(2x + \frac{\pi}{2}\right) = 1$   $3 \sin \left(2x + \frac{\pi}{2}\right) = 1$ 

$$2x = \frac{\pi}{6} - \frac{\pi}{2}, \frac{5\pi}{6} - \frac{\pi}{2}$$

$$\chi = -\frac{\pi}{6}, \frac{\pi}{6} \dots, -2, -1, 0, 1, 2, \dots$$

NOTE: The steps are exactly the same as a particular solution except for adding the period. We simply add period  $\times n$  instead.


**ALSO NOTE:** We must state that  $n \in \mathbb{Z}$ .



Discussion: What does the n have to be a whole number?

# Question 14 B. $A = \frac{\pi}{4}$ Find the general solutions to the following equation: $\sin\left(-2x + \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \quad 2\sin\left(-2x + \frac{\pi}{4}\right) = \sqrt{2}$ $= \frac{2\pi}{4}$ $= 2\pi$ $= 2\pi$

-2x=0,  $\frac{\pi}{2} \longrightarrow x=0$ ,  $-\frac{\pi}{4}$ 



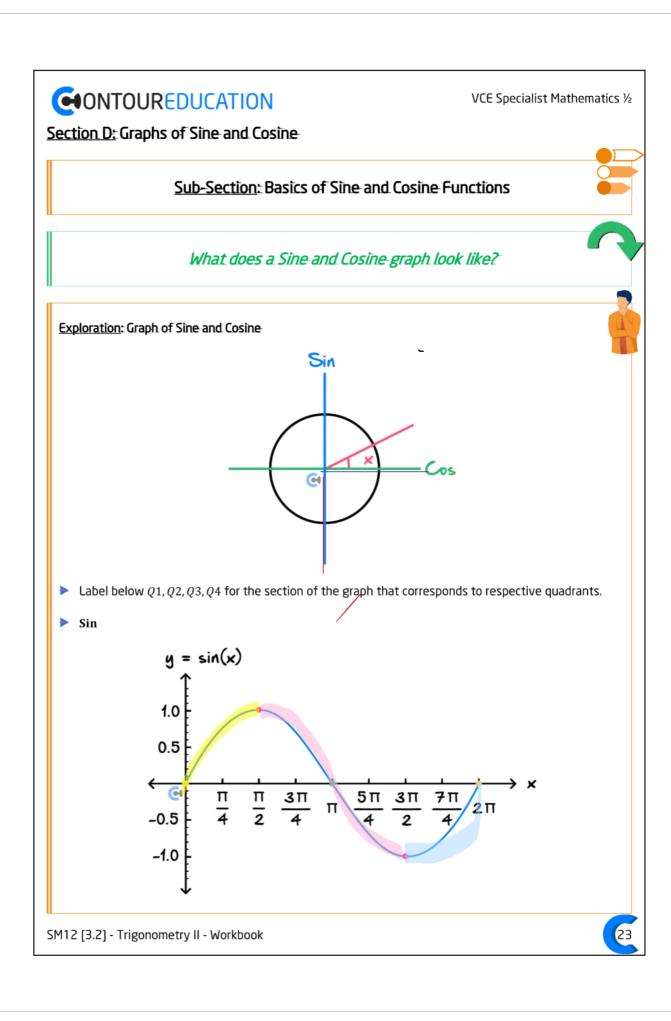
**NOTE:** For tangents, we always get one general solution!

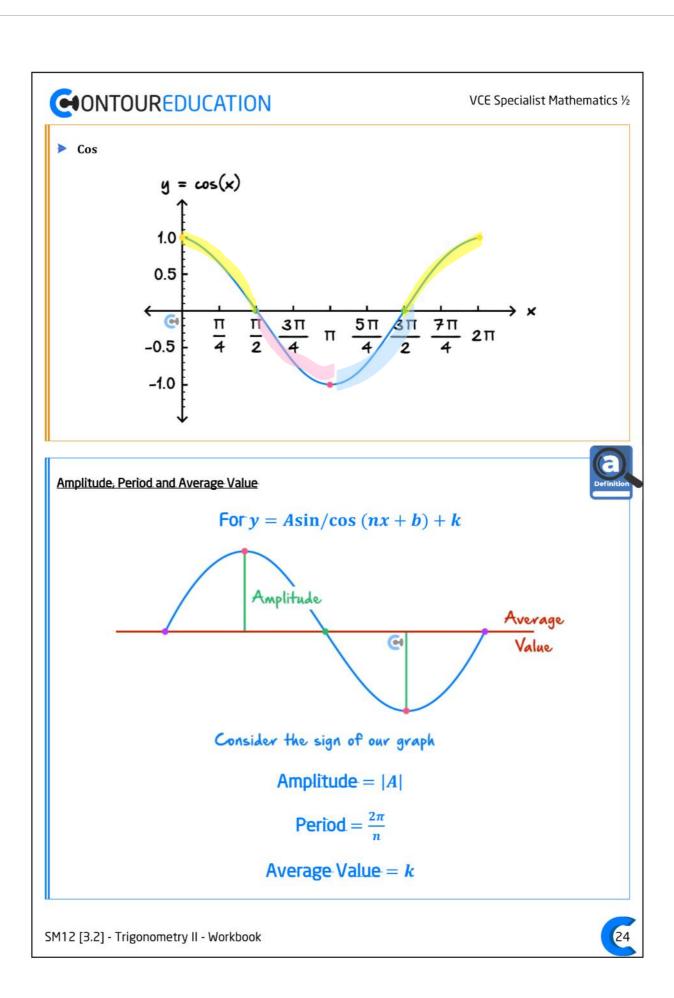


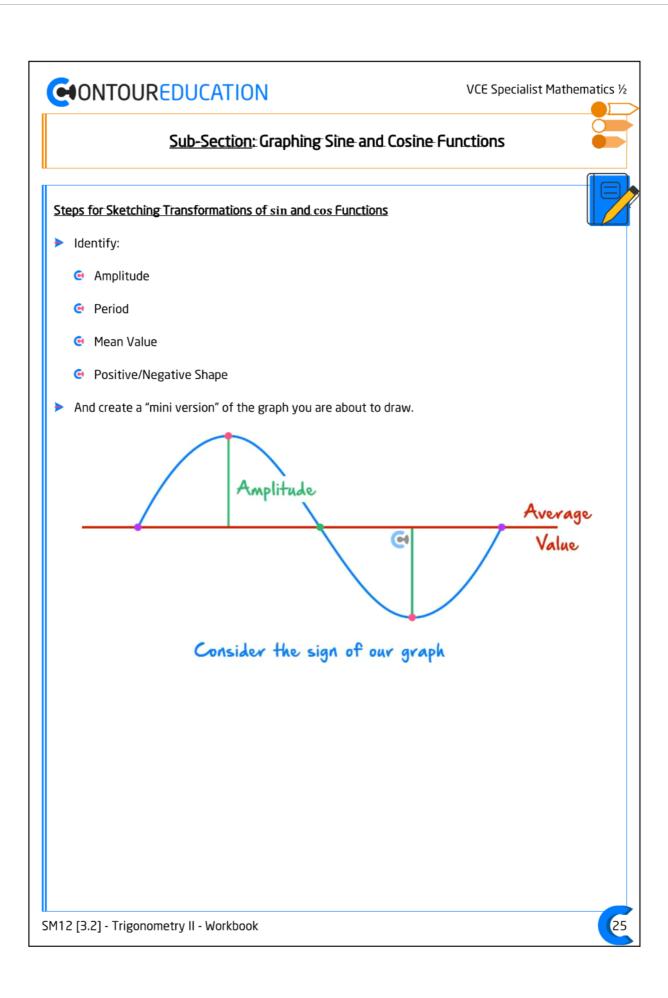
## **Question 16**

Find the general solutions to the following equation:

Period = Vn


following equation:  


$$2\sqrt{3} + 2\tan\left(2\left(x + \frac{\pi}{6}\right)\right) = 0$$

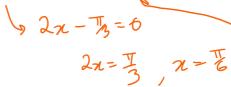

$$\tan\left(2\left(x + \frac{\pi}{6}\right)\right) = -\sqrt{3}$$

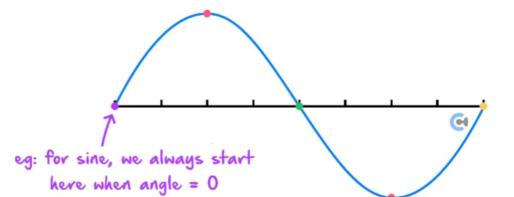
$$2(n+\frac{1}{6})=-\frac{1}{3}$$

$$|x = -\frac{\pi}{3} + \frac{\pi}{2}n, n \in \mathbb{Z}$$

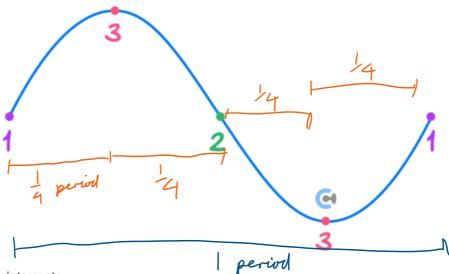








# **C**ONTOUREDUCATION

VCE Specialist Mathematics ½


- ightharpoonup Start plotting the function from when the angle =0.

  - Why?



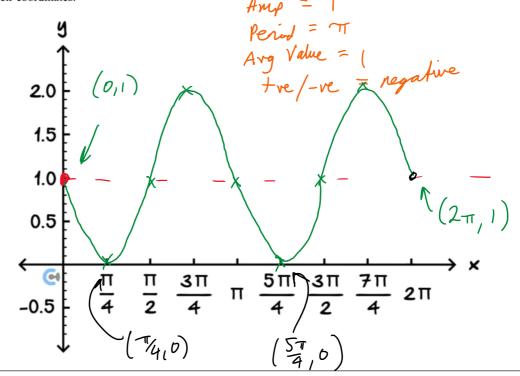


Draw the start and end of the periods, and plot the halves (turning points).



- Find any x-intercepts.
- Join all the points!

SM12 [3.2] - Trigonometry II - Workbook


26

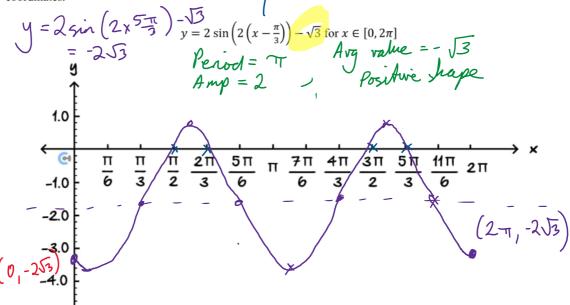
# **CONTOUREDUCATION**

Question 17 Walkthrough.

$$2x=0$$

Sketch the graph of  $f(x) = -\sin(2x) + 1$  for  $x \in [0, 2\pi]$  on the axes below, labelling all intercepts and endpoints with their coordinates.




Space for Personal Notes



**Question 18** 

 $2(x-\frac{\pi}{3})=6, \quad x=\frac{\pi}{3}$ 

Sketch the following on the axes below, labelling all intercepts, endpoints, and turning points with their coordinates.



Finding x-interepts (y=0) $2\sin(2(x-\frac{\pi}{3}))-\sqrt{3}=0$ 

$$2\sin\left(2(x-\frac{\pi}{3})\right)-\sqrt{3}=0$$

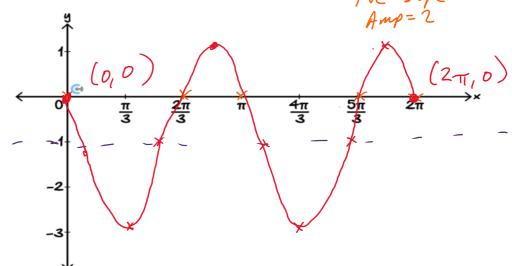
$$\sin\left(2(x-\frac{\pi}{3})\right)=\frac{13}{2}$$

$$2(x-T_3) = T_3, \frac{2\pi}{3}$$

$$\begin{bmatrix}
 \chi = \frac{\pi}{2}, \frac{2\pi}{3} \\
 \downarrow + period
 \end{bmatrix}$$

 $\chi = \frac{37}{2}, \frac{57}{3}$ 

SM12 [3.2] - Trigonometry II - Workbook


28



# **Question 19**

 $2x+\sqrt{3}=0$ ,  $x=-\frac{\pi}{6}$ 

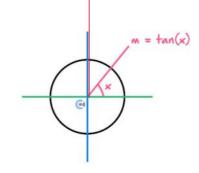
Sketch the following on the axes below, labelling all intercepts, endpoints, and turning points with their period coordinates.  $y = 2\cos\left(2x + \frac{\pi}{3}\right) - 1 \text{ for } x \in [0, 2\pi]$ + ve shape  $\frac{\pi}{6}$ 



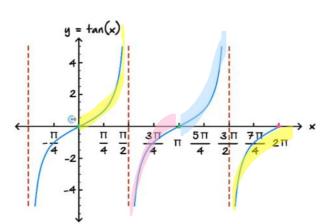
Finding x-intercepts (y=0)

105(2x+ T3) = 12  $2x + \frac{\pi}{3} = \frac{\pi}{3}, -\frac{\pi}{3}$ 




Section E: Graphs of Tangent

# Sub-Section: Basics of Tangent Graphs




# What does the tangent graph look like?

**Exploration:** Graph of Tangents



- Label below Q1, Q2, Q3, Q4 for the section of the graph which corresponds to respective quadrants.
- Tan(x)



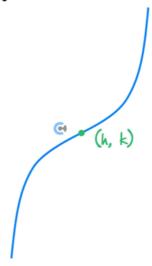
Discussion: Why do we have a vertical asymptote for a tangent?



tan (7) = undefined

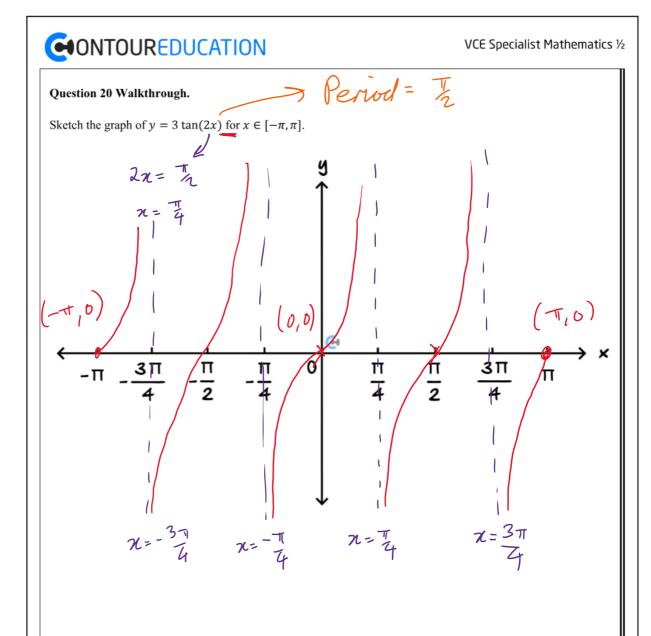







# **Sub-Section:** Graphing Tangent Functions

Steps for Sketching tan Functions

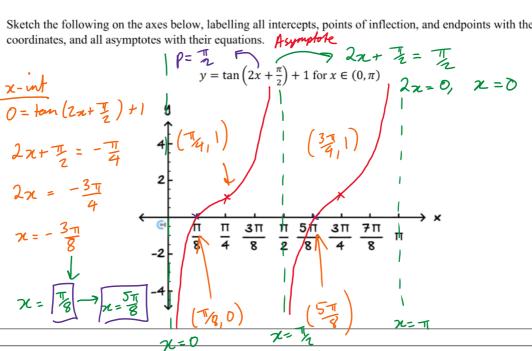

- Identify
  - $\bullet \quad \text{The period} = \frac{\pi}{n}.$
- Find the vertical asymptotes by solving for the angle  $=\frac{\pi}{2}$ .
- Find other vertical asymptotes within the domain by adding the period to answer from the previous step.
  - For instance, for  $\tan\left(2x \frac{\pi}{3}\right)$ , solve  $2x \frac{\pi}{3} = \frac{\pi}{2}$  for x.
- Plot the inflection point (h, k) (Midpoint of the two vertical asymptotes).
  - x value of inflection point = x value, which makes an angle = x
  - $\mathbf{G}$  y value of inflection point = vertical translation of the function.

eg: 
$$tan(x-h)+k$$



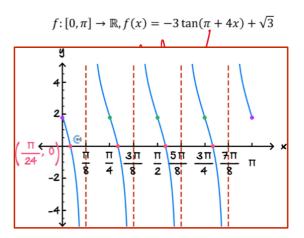
- Find any x-intercepts.
- Sketch a "cubic-like" shape.

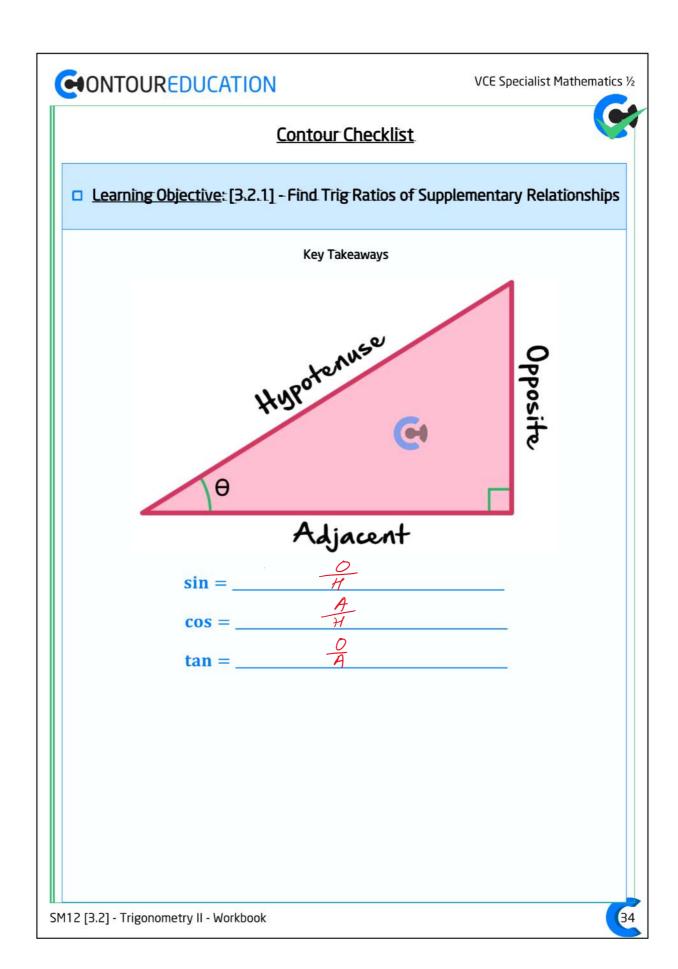


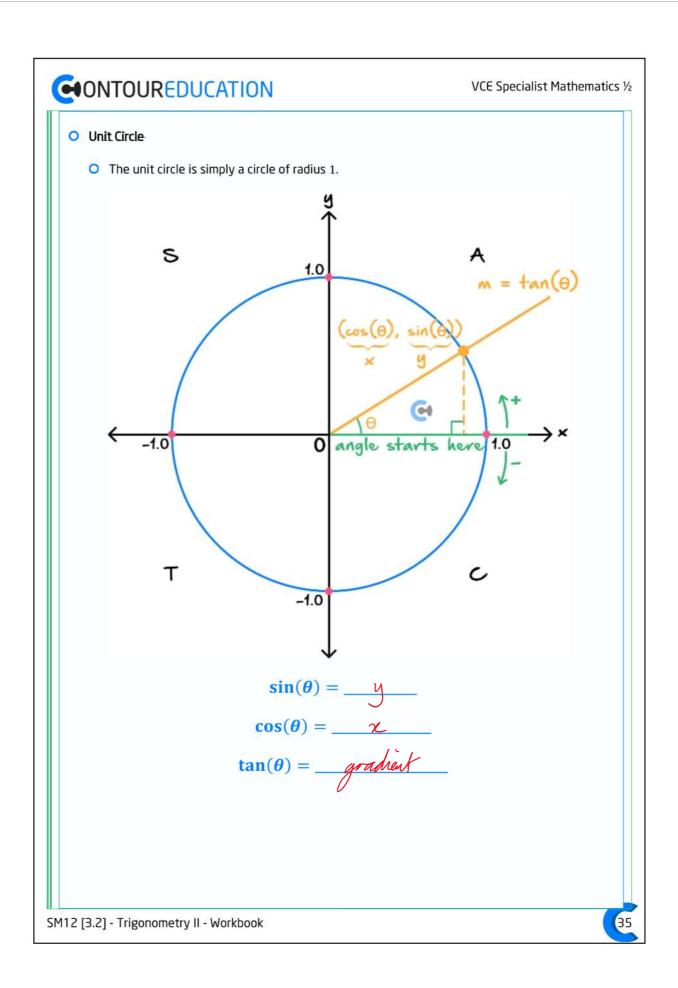



Space for Personal Notes

# Your turn!


# **Question 21**


Sketch the following on the axes below, labelling all intercepts, points of inflection, and endpoints with their




# **Question 22**

Sketch the following on the axes below, labelling all intercepts, points of inflection, and endpoints with their coordinates and all asymptotes with their equations.







# **C**ONTOUREDUCATION

Period of a Trigonometric Function.

period of 
$$sin(nx)$$
 and  $cos(nx)$  functions =  $\frac{2\pi}{\ln L}$ 

period of  $tan(nx)$  functions =  $\frac{\pi}{\ln L}$ 

where n = coefficient of x.

O Pythagorean identity:

$$\sin^2(\theta) + \cos^2(\theta) =$$

- Supplementary relationships:
  - $\bigcirc$  Second Quadrant  $(\pi \theta)$

$$\cos(\pi - \theta) = -\cos(\theta)$$

$$\sin(\pi - \theta) = \underline{\sin(Q)}$$

$$\tan(\pi - \theta) = -\tan(\theta)$$

O Third Quadrant  $(\pi + \theta)$ 

$$\cos(\pi + \theta) = -\cos(\theta)$$

$$\sin(\pi + \theta) = -\sin(\theta)$$

$$\tan(\pi + \theta) = \frac{\tan(\theta)}{\tan(\theta)}$$

 $\bigcirc$  Fourth Quadrant  $(-\theta)$ 

$$\cos(-\theta) = \underline{\cos(\theta)}$$

$$\sin(-\theta) = -\sin(\theta)$$

$$\tan(-\theta) = -\tan(\theta)$$

SM12 [3.2] - Trigonometry II - Workbook

50

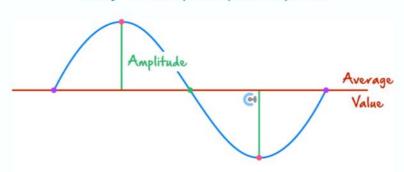


# 

SM12 [3.2] - Trigonometry II - Workbook

37

□ Add  $\underbrace{\textit{N} \cdot \textit{pewd}}_{}$  where  $n \in Z$ .




# □ Learning Objective: [3.2.3] - Graph Sine, Cosine and Tangent functions

# **Key Takeaways**

O Amplitude, Period and Average Value

For 
$$y = A\sin/\cos(nx + b) + k$$



Consider the sign of our graph

$$\textbf{Amplitude} = \underline{\hspace{1cm} \mathcal{A}}$$

Period = 
$$\frac{2\pi}{1nI}$$

O Tan function:

$$\frac{\text{Period}}{|n|} = \frac{\sqrt{n}}{|n|}$$

- Find the asymptotes by solving for angle = 75.
- Find the other asymptotes by adding the \_\_\_\_\_\_ period to the previous answer.
- For the point of inflection:
  - $\square$  x value of inflection point = x value, which makes an angle =  $\underline{\square}$ .
  - $\Box$  y value of inflection point = vertical translation of the function.



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

# VCE Specialist Mathematics ½

# Free 1-on-1 Consults

# What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

# G

# **Booking Link**

bit.ly/contour-specialist-consult-2025

