

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Trigonometry II [3.2]

Homework

Admin Info & Homework Outline:

Student Name	
Stadent Name	
Questions You Need Help For	
Compulsory Questions	Pg 2 - Pg 17

Section A: Compulsory Questions

Sub-Section [3.2.1]: Find Trig Ratios of Supplementary Relationships

Question 1					
Sin	applify the following expressions:				
a.	$\sin(\pi - x)$				
b.	$\cos\left(\frac{\pi}{2} + x\right)$				
c.	$tan(\pi - x)$				

Question	2
Question	_

If $sin(x) = \frac{3}{5}$, where x is an angle in the first quadrant, evaluate the following:

a. $sin(\pi + x)$

b. cos(x)

c. $tan(2\pi - x)$

Question 3

If $cos(x) = -\frac{3}{10}$, where $\pi \le x \le \frac{3\pi}{2}$, evaluate the following:

a. $cos(\pi + x)$

b. $\sin(\pi + x)$

c. $tan(\pi - x)$

Question 4 Tech-Active.

If $\sin(x) = -\frac{9}{20}$, where x is a third quadrant angle, evalute $\cos(\pi + x)$.

Sub-Section [3.2.2]: Find Particular and General Solutions

Question 5					
Solve the following trigonometric equations over the specified domain:					
a. $2\cos(x) = \sqrt{3}, x \in [0, 2\pi]$					
b. $4\sin(3x) = 2, x \in [0, \pi]$					

).	$4\sin(3x) = 2, x \in [0,\pi]$				

c. $8 \tan(2x) - 5 = 3, x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2} \right]$

Question 6

Find the general solution to the following trigonometric equations:

 $\mathbf{a.} \quad 2\sin\left(-4x + \frac{\pi}{6}\right) = 1$

b.	$\sqrt{2}\cos\left(3x - \frac{\pi}{2}\right) = 1$	1		

 $\cot \left(\frac{\pi}{2}x + \frac{\pi}{3}\right) - 1 = 0$

Question 7

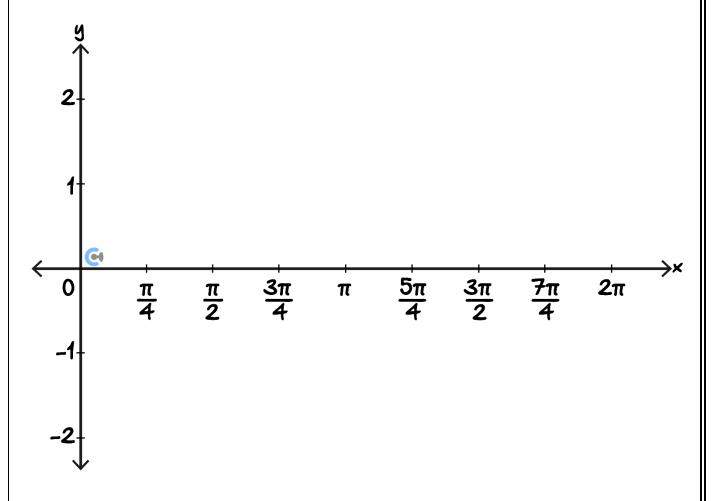
Consider the function $f(x) = 2 \tan \left(3x + \frac{\pi}{3}\right) + 2$.

a. Find the general solution to f(x) = 0.

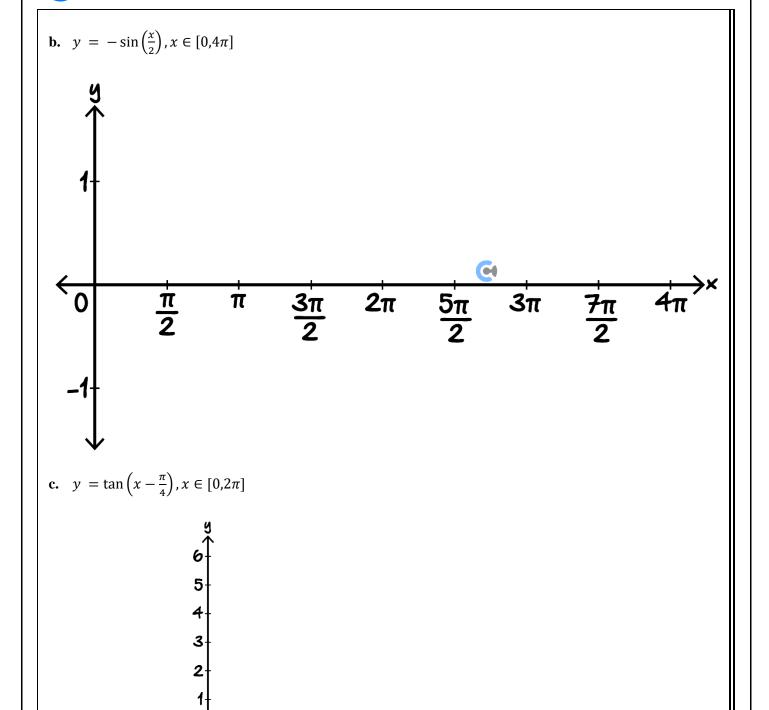
b. Hence, solve f(x) = 0 for $x \in [0, \pi]$.

Question 8 Tech-Active.

Find the general solution to $2 \sin(\pi(x-2)) = 1$.


Sub-Section [3.2.3]: Graph Sine, Cosine and Tangent Functions

Question 9

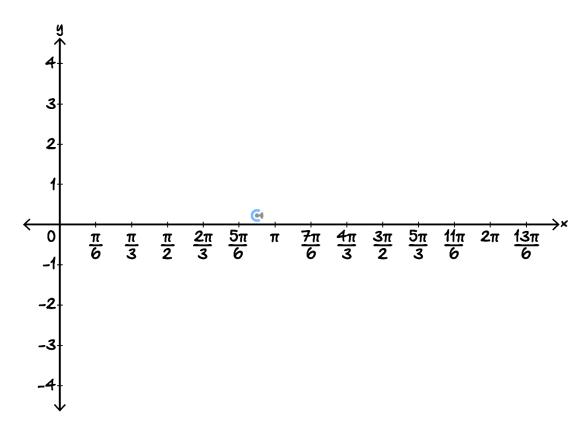


Sketch the graphs of the following functions over the indicated domain. Label all axes intercepts and endpoints with coordinates, and label asymptotes with equations.

a. $y = \cos(2x), x \in [0, 2\pi]$

<u>5π</u>

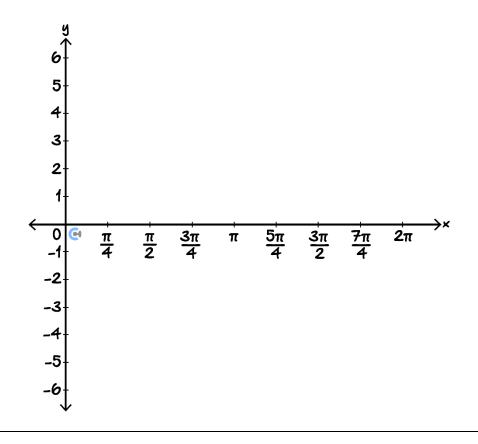
<u>3π</u> 2 7π 4



Question 10

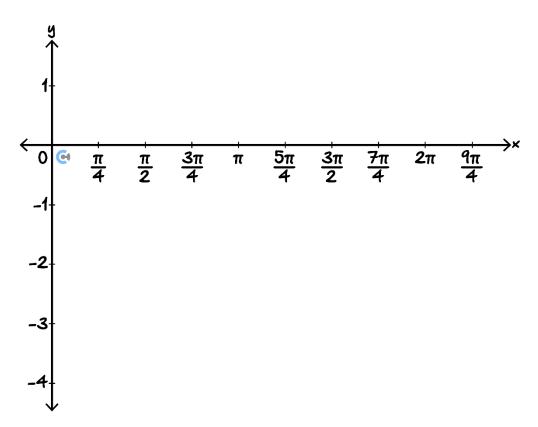


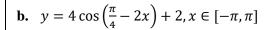
Sketch the graphs of the following functions over the indicated domain. Label all axes intercepts, turning points and endpoints with coordinates, and label asymptotes with equations.

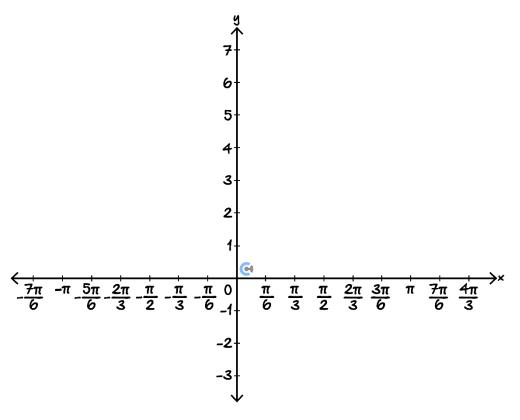

a.
$$y = 2\sin\left(x - \frac{\pi}{3}\right), x \in [0, 2\pi]$$

b. $y = -3\cos(2x) - 3, x \in [0, 4\pi]$

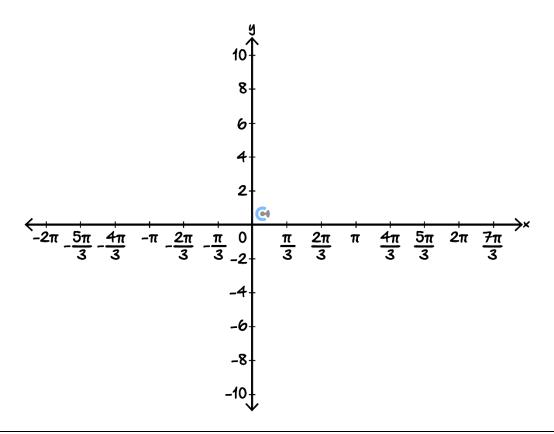
c. $y = 2 \tan \left(2x - \frac{\pi}{2}\right), x \in [0, 2\pi]$

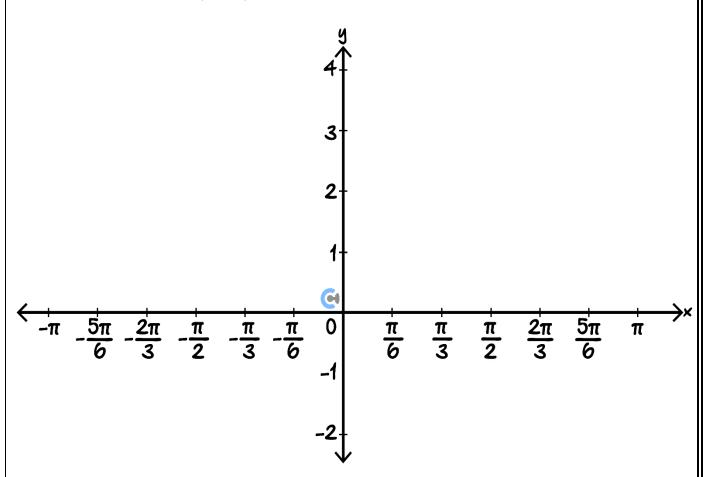



Question 11



Sketch the graphs of the following functions over the indicated domain. Label all axes intercepts, turning points and endpoints with coordinates, and label asymptotes with equations.


a.
$$y = 2\sin\left(2x - \frac{\pi}{3}\right) - 1, x \in [0, 2\pi]$$

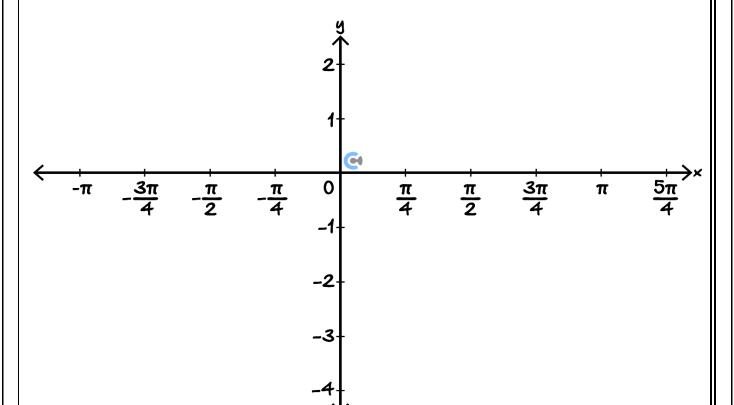

c.
$$y = 2 \tan \left(\frac{\pi}{3} - \frac{x}{2} \right), x \in [-2\pi, 2\pi]$$

Question 12 Tech-Active.

Sketch the graph of $y = 2\cos\left(2x + \frac{\pi}{4}\right)$. Label all axes intercepts, turning points and endpoints with coordinates.

Sub-Section: The 'Final Boss'

Question 13


Consider the function $f(x) = 3\sin\left(2x + \frac{\pi}{3}\right) + \cos\left(2x + \frac{5\pi}{6}\right) - 1$.

a. Express f(x) in the form $f(x) = a \sin(2x + b) - 1$.

b. Find the general solution to f(x) = 0.

c. Find all solutions to f(x) = 0 for $x \in [-\pi, \pi]$.

d. Sketch the graph of y = f(x) on the axes below. Labell all axes intercepts, turning points and endpoints with coordinates.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- ▶ Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

