CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Trigonometry I [3.1]

Workbook

Outline:

Pg 21-35

Introduction to Trigonometry

- Introduction to Trigonometry
- Trigonometric Ratios

Triangle Rules

- Sine Rule
- Cosine Rule
- Area of a Triangle

Pg 2-5

Pg 6-20

- Definitions
- Arc Length
- Chord Lengths

Circle Mensuration

- Sector Area
- Segment Area

<u>Angles</u>

Pg 36-41

- Angle of Elevation and Depression
- Bearing

Learning Objectives:

- SM12 [3.1.1] Find lengths, angles, and area of triangles using sine and cosine rule
- SM12 [3.1.2] Find arc lengths, chord lengths, sector, and segment areas
- SM12 [3.1.3] Apply angle of elevation/depression and bearing to solve geometric problems (Only 2D)

Section A: Introduction to Trigonometry

Sub-Section: Introduction to Trigonometry

Why is trigonometry useful?

Context: Trigonometry in Real Life

Let's say Pranit is leaning on the wall.

- \blacktriangleright He knows he is 175 cm tall, and wants to calculate how far his feet are from the wall.
- To calculate this, what information is important?
- Trigonometry is a topic which links the angle with the length.

Sub-Section: Trigonometric Ratios

Trigonometric Ratios

$$sin(\theta) = \frac{b}{c} = \frac{opposite}{hypotenuse}$$

$$\cos(\theta) = \frac{a}{c} = \frac{adjacent}{hypotenuse}$$

$$\tan(\theta) = \frac{b}{a} = \frac{opposite}{adjacent}$$

CONTOUREDUCATION	vec specialist riuthematics /
Question 1 Walkthrough.	
Sam is leaning against a vertical wall makes an angle of 55° with the ground. His above the ground. Calculate:	head touches the wall at 1.5 m
a. Sam's height, correct to two decimal places.	
b. The distance between his feet and the wall, correct to two decimal places.	
or and discussion con the real and the many correct to the decimal process.	
П	

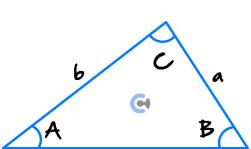
Your turn!

Question 2 Tech-Active.

A ladder leaning against a vertical wall makes an angle of 26° with the wall. If the foot of the ladder is 3 m from the wall, calculate:

a. The length of the ladder, correct to two decimal places.

b. The height it reaches above the ground, correct to two decimal places.

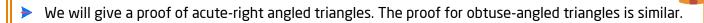

Section B: Triangle Rules

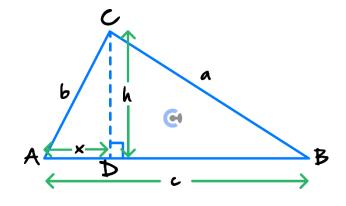
Sub-Section: Sine Rule

The Sine Rule

The sine rule states that for a triangle *ABC*:

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$





How does this work?

Exploration: Proof of the Sine Rule

► In triangle *ACD*:

$$sin(A) = \underline{\hspace{1cm}}$$

$$h =$$

► In triangle *BCD*:

$$\sin B = \underline{\hspace{1cm}}$$

Hence, if you were to substitute $h = b \sin(A)$:

$$\sin B =$$

If you rearrange,

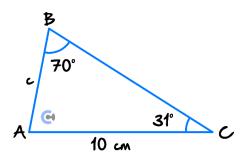
$$\frac{a}{\sin(A)} = \underline{\hspace{1cm}}$$

That proves the sine rule!

When is the sine rule used?

Application of Sine Rule

- We can use it to solve for length or angles within the triangle.
- CASE 1: One _____ and two ____ are given.
 - In CASE 1, the triangle is uniquely defined up to ______
- CASE 2: Two _____ and a non-included _____ are given (the angle is not 'between' the two sides).
 - In CASE 2, there may be _____ possible triangles.

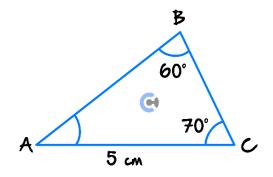


Let's take a look at the first case!

Question 3 Walkthrough.

Case 1: One side and two angles given.

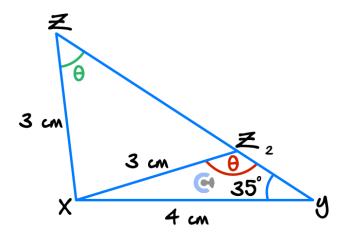
Find the length AB using the sine rule, in cm correct to two decimal places.



Question 4

Case 1: One side and two angles given.

Find the length AB using the sine rule, in cm correct to two decimal places.



Let's look at the second case!

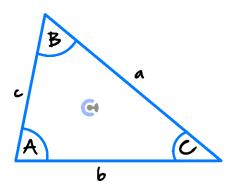
Question 5 Walkthrough.

Case 2: Two sides and non-included angle given.

Consider a triangle XYZ. Find the magnitude of angle Z in the triangle, given that $Y = 35^{\circ}$, XZ = 3 cm, and XY = 4 cm. Give your answer in degrees, correct to two decimal places.

NOTE: $Sin(180 - \theta) = Sin(\theta^{\circ}).$

Question 6
Case 2: Two sides and non-included angle given.
Consider a triangle XYZ. Find the magnitude of angle Z in the triangle, given that $Y = 25^{\circ}$, $XZ = 5$ cm, and $XY = 6$ cm. Give your answer in degrees, correct to two decimal places.

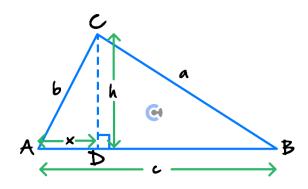


Sub-Section: Cosine Rule

The Cosine Rule

$$a^2 = b^2 + c^2 - 2bc \cos(A)$$

$$\cos(A) = \frac{b^2 + c^2 - a^2}{2bc}$$



How does this work?

Exploration: Proof of Cosine Rule

In triangle ACD:

In triangle ACD:

$$cos(A) = \underline{\hspace{1cm}}$$

▶ Using Pythagoras' theorem in Triangles *ACD* and *BCD*:

$$b^2 =$$

$$a^2 =$$

Expanding the second equation gives us:

$$a^2 =$$

Substituting $b^2 = x^2 + h^2$ gives us:

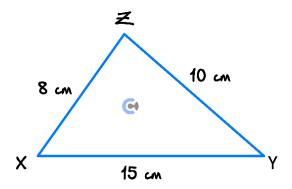
$$a^2 =$$

Substituting $x = b \cos(A)$ gives us:

$$a^2 =$$

That proves the cosine rule!

Application of Cosine Rule

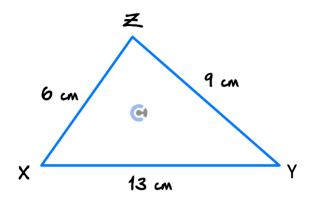


- We can use it to solve for length or angles within the triangle.
 - Same as sine rule in terms of the aim.
 - CASE 1: Three _____ are given.
 - > CASE 2: Two _____ and the included _____ are given (the angle **IS** between the two sides).
- In each case, the triangles are uniquely defined up to ______.

Question 7 Walkthrough.

Case 1: Three sides are given.

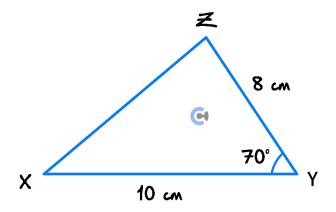
Find the angle Z° . Give your answer correct to two decimal places.



Question 8

Case 1: Three sides are given.

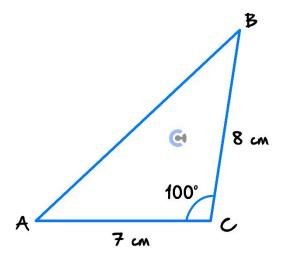
Find the angle X° . Give your answer correct to two decimal places.



Question 9 Walkthrough.

Case 2: Two sides and the included angle are given.

Find the length of XZ using the sine rule, in cm correct to two decimal places.

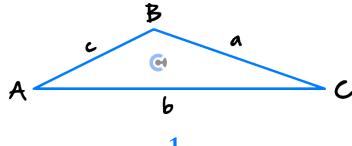


Question 10

Case 2: Two sides and the included angle are given.

Find the length of AB using the sine rule, in cm correct to two decimal places.

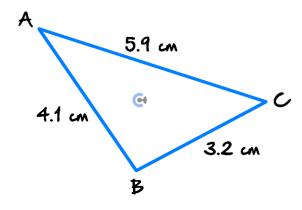
<u>Discussion:</u> What would happen to cosine rule if the angle was 90 degrees?


Sub-Section: Area of a Triangle

Area of a Triangle

In terms of two given sides, and the included angle:

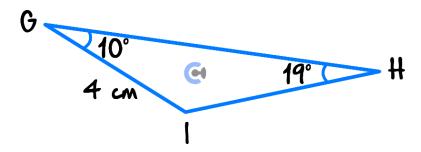
$$Area = \frac{1}{2}bc\sin(A)$$


NOTE: Angle must be an angle between the two sides b and c.

Question 11 Walkthrough. Tech-Active.

Find the area of the triangle, correct to three decimal places. Include a unit in your answer.

NOTE: We use cosine rule to solve for one angle first!



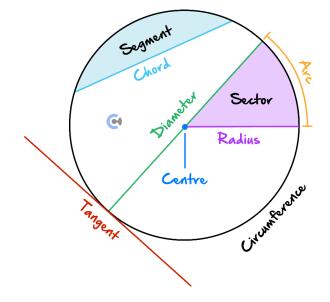
Your turn!

Question 12 Tech-Active.

Find the area of the triangle, correct to three decimal places. Include a unit in your answer.

Section C: Circle Mensuration

Sub-Section: Definitions

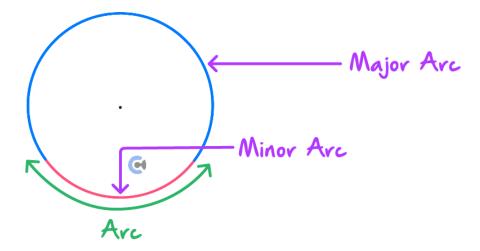


What is circle mensuration?

Mensuration

- Part of geometry concerned with finding lengths, areas, and volumes of shapes and objects.
- > Circle mensuration is about finding the lengths and areas of different features on circles.

NOTE: This topic is important for SM34 complex planes/subsets!

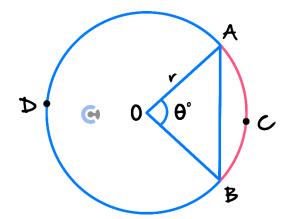


Key Terminology

In the diagram, the circle has a centre O.

- Chord = Line segment with endpoints on the circle.
 - Chord passing through the centre is called the ______.
- Arc = Any curved part of the circle.
 - G The shorter arc is called the _____ arc and the longer is the _____ arc.
- Segment = Every chord divides the interior of a circle into two segments.
 - The smaller segment is called the _____ segment and the larger is the _____ segment.
- Sector = Pizza slice. Two radii and an arc define a sector.
- Tangent = Line outside a circle that touches the circle exactly once (and does not pass through it).

Sub-Section: Arc Length

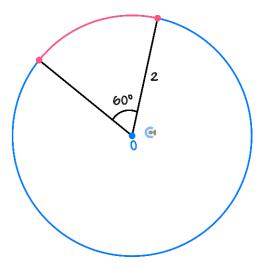


How do we calculate the arc length?

Arc Length

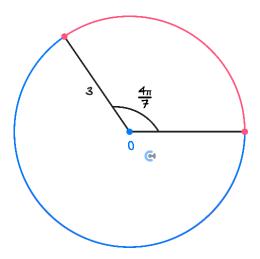
The arc ACB and the corresponding chord AB are said to _____ the angle $\angle AOB$ at the centre of the circle.

$$l = 2\pi r \times \%$$


Where,
$$\% = \frac{\theta^c}{2\pi} = \frac{\theta^\circ}{360}$$

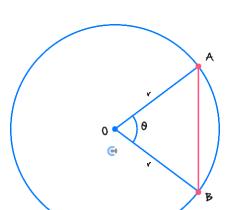
- We simply find the % of circumference.
 - \bullet % is defined by the angle θ divided by the entire rotation.

Question 13 Walkthrough.


Find the arc length highlighted in red below.

Question 14

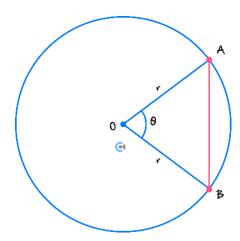
Find the arc length highlighted in red below.


Sub-Section: Chord Lengths

How do we calculate the chord length?

Chord Length

$$AB = 2r\sin\left(\frac{\theta}{2}\right)$$

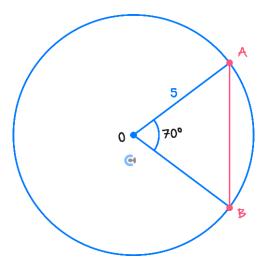


How does this work?

Exploration: Derivation of Chord Length Formula

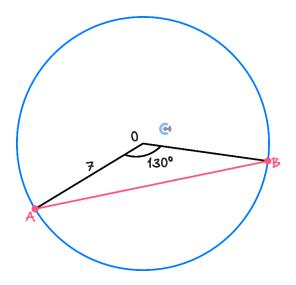
Consider the chord length below.

- > Simply cut the length in half in the diagram above.
- How can we solve for the chord length?


 $Chord\ Length = 2l$

$$=2r\sin\left(\frac{\theta}{2}\right)$$

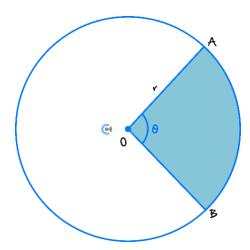
Question 15 Walkthrough. Tech-Active.


Find the chord length AB highlighted in red below. Give your answer correct to two decimal places.

Question 16 Tech-Active.

Find the chord length AB highlighted in red below. Give your answer correct to two decimal places.

Sub-Section: Sector Area



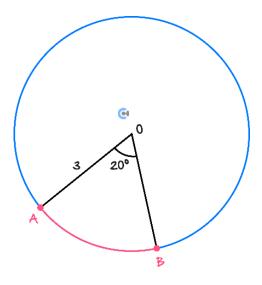
How do we calculate the sector area?

Area of Sector

$$l = \pi r^2 \times \%$$

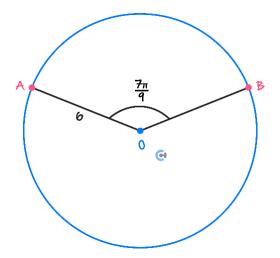
Where,
$$\%=rac{ heta^c}{2\pi}=rac{ heta^\circ}{360}$$

- We simply find the % of the circle area.
 - \bullet % is defined by the angle θ divided by the entire rotation.


Using degrees: Area of sector
$$=\frac{\pi r^2 \theta^{\circ}}{360}$$

Using radians: Area of sector
$$=\frac{1}{2}r^2\theta^c$$

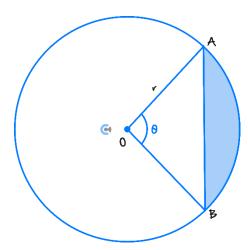
Question 17 Walkthrough.


Find the area of the sector AOB. Give your answer correct to two decimal places.

Question 18

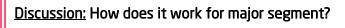
Find the area of the sector *AOB*.

Sub-Section: Segment Area



How do we calculate the segment area?

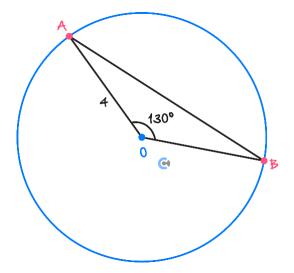
Area of Segment



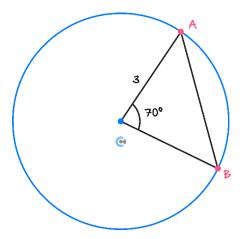
- \blacktriangleright The area of the segment is the area of the sector OAB minus the area of the triangle OAB.
- ▶ Using the area of a triangle formula, the area of triangle OAB is $\frac{1}{2}r^2\sin(\theta)$.

$$A = \frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin(\theta) = \frac{1}{2}r^2(\theta - \sin(\theta)) \text{ (radians)}$$

$$A = \left(\frac{\theta}{360}\right) \times (\pi r^2) - \frac{1}{2}r^2 \sin(\theta) \text{ (degrees)}$$



Question 19 Walkthrough. Tech-Active.


Find the area of the minor segment given by the line segment AB. Give your answer correct to two decimal places.

Question 20 Tech-Active.

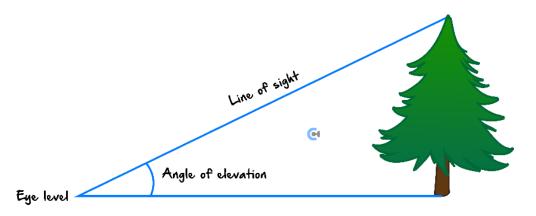
Consider the diagram below.

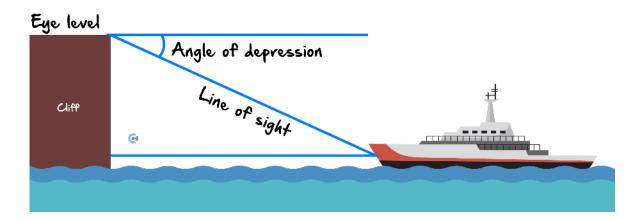
a. Find the area of the minor segment given by the line segment *AB*. Give your answer correct to two decimal places.

b. Find the area of the major segment given by the line segment *AB*. Give your answer correct to two decimal places.

NOTE: Simply change the angle to $360 - \theta$.

Section D: Angles


Sub-Section: Angle of Elevation and Depression

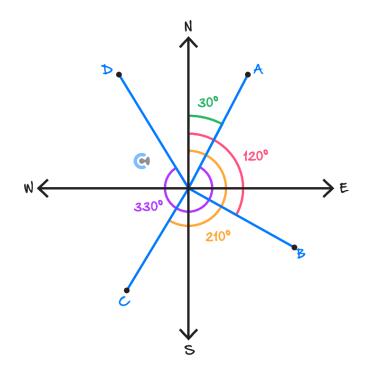

Angle of Elevation, Angle of Depression

- Angle of Elevation
 - The angle of elevation is the angle between the **horizontal** and a **direction** ______ the horizontal.

- Angle of Depression
 - The angle of elevation is the angle between the **horizontal** and a **direction** ______ the horizontal.

Question 21 Walkthrough.
A hiker standing on top of a mountain observes that the angle of depression to the base of a building is 41° . If the height of the hiker above the base of the building is $500 m$, find the horizontal distance from the hiker to the building in metres, correct to two decimal places.
Space for Personal Notes

Question 22
A person standing on top of a cliff $50 m$ high is in line with two buoys, whose angles of depression are 18° and 20° . Calculate the distance between the buoys in metres, correct to two decimal places.
Space for Personal Notes


Sub-Section: Bearing

Bearing

➤ The **bearing** is the _____ measured from _____ **in the** ____ **direction**.

Space for Personal Notes

Question 23 Walkthrough.		
A yacht starts from a dock at a point L and sails 13 km due west to M . It then sails 8 km on a bearing of 145° to K . Find the magnitude of the angle MLK in degrees, correct to three decimal places.		
Space for Personal Notes		

Question	24
Question	

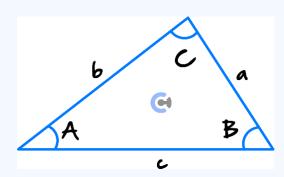
A yacht sails from point A to point B on a bearing of 75° for 5 km, then from point B to point C on a bearing of 315° for 10 km. Find:

a. The distance between point A and point C.

b. The distance that the yacht is from point A when it is closest to point A on the BC leg.

HINT: The closest distance between the line AB and point C is the connecting line (DC), where D lies on AB, is perpendicular to AB.

Space for Personal Notes

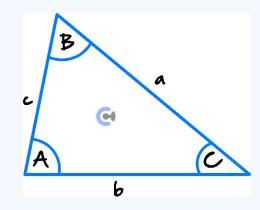


Contour Checklist

Learning Objective: [3.1.1] - Find lengths, angles, and area of triangles using sine and cosine rule

Key Takeaways

☐ The sine rule states that for a triangle *ABC*:

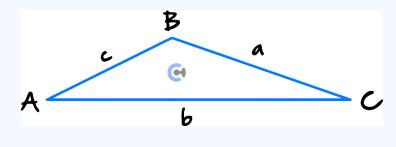

$$\frac{a}{\sin(A)} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Application of Sine Rule

- ☐ We can use it to solve for length or angles within the triangle.
- CASE 1: One _____ and two ____ are given.
 - O In CASE 1, the triangle is uniquely defined up to ______
- CASE 2: Two _____ and a non-included _____ are given (the angle is not 'between' the two sides).
 - O In CASE 2, there may be _____ possible triangles.

☐ The cosine rule states that for a triangle *ABC*:

$$a^2 = b^2 + c^2 - \underline{\hspace{1cm}}$$

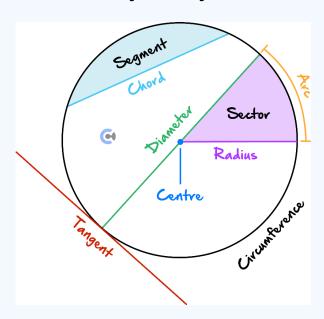

$$cos(A) =$$

Application of Cosine Rule

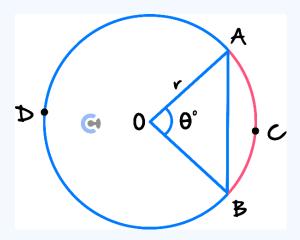
- ☐ We can use it to solve for length or angles within the triangle.
 - O CASE 1: Three _____ are given.
 - O CASE 2: Two _____ and the included _____ are given (the angle **IS** between the two sides).
- ☐ In each case, the triangles are uniquely defined up to ______.

Area of a Triangle

In terms of two given sides, and the included angle:



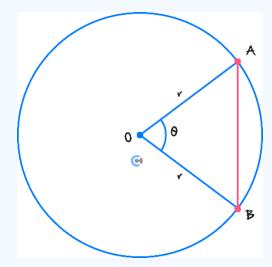
$$A = \underline{\hspace{1cm}}$$



□ <u>Learning Objective</u>: [3.1.2] - Find arc lengths, chord lengths, sector, and segment areas

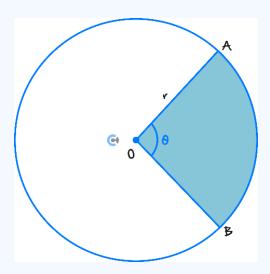
Key Takeaways

Arc Length



The arc ACB and the corresponding chord AB are said to _____ the angle $\angle AOB$ at the centre of the circle.

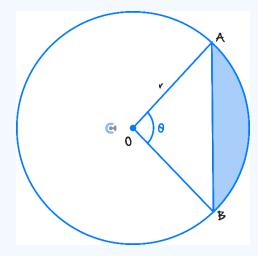
$$l = 2\pi r \times \%$$



Chord Length

$$AB =$$

Area of Sector



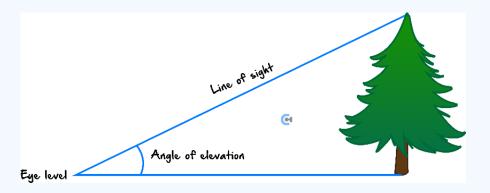
Using degrees: Area of sector = _____

Using radians: Area of sector = _____

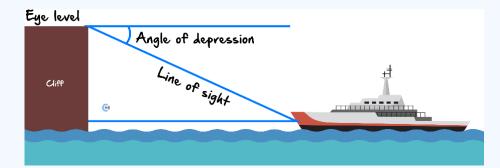
Area of Segment

- ☐ The **area of the segment** is the area of the sector _____ minus the area of the triangle
- Using the area of a triangle formula, the area of triangle OAB is $\frac{1}{2}r^2\sin(\theta)$.

$$A =$$
 (radians)



□ <u>Learning Objective</u>: [3.1.3] – Apply angle of elevation/depression and bearing to solve geometric problems (Only 2D)


Key Takeaways

Angle of Elevation, Angle of Depression

- Angle of Elevation
 - The angle of elevation is the angle between the horizontal and a direction _
 the horizontal.

- Angle of Depression
 - The angle of elevation is the angle between the horizontal and a direction ______
 the horizontal.

Bearing

The bearing is the ______ measured from ______ in the ______ direction.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45+ raw scores and 99+ ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- **What To Do?** Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

