

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½
AOS 3 Revision [3.0]
Contour Check

Contour Check

[3.1] - Trigonometry I (Checkpoints)

- [3.1.1] Find Lengths, Angles and Area of Triangles Using Sine and Cosine Rule Pg 3-6
- [3.1.2] Find Arc Lengths, Chord Lengths, Sector and Segment Areas Pg 7-11
- [3.1.3] Apply Angle of Elevation/Depression and Bearing to Solve Geometric Problems (Only 2D)
 Pg 12-15

[3.2] - Trigonometry II (Checkpoints)

- ☐ [3.2.2] Find Particular and
 General Solutions Pg 21-25
- ☐ [3.2.3] Graph Sine, Cosine and
 Tangent Functions Pg 26-30

[3.3] - Trigonometry Exam Skills (Checkpoints)

☐ [3.3.1] and [3.3.2] - Apply Trigonometry to Solve Problems in 3D and Find the Angle between Planes Pg 31-35

[3.4] - Advanced Trigonometric Functions (Checkpoints)

- [3.4.1] Trigonometric Identities and Solving Exact Values of Reciprocal Functions Pg 36-38
- [3.4.2] Graph Reciprocal TrigonometricFunctionsPg 39-41
- **[3.4.3]** Apply Compound and Double Angle Formula to Solve Exact Values Pg 42-43
- ☐ [3.4.4] Find Domain, Range and Rule of the Inverse Trigonometric Function Pg 44-47
- ☐ [3.4.5] Graphing Inverse Trigonometric Functions Pg 48-51

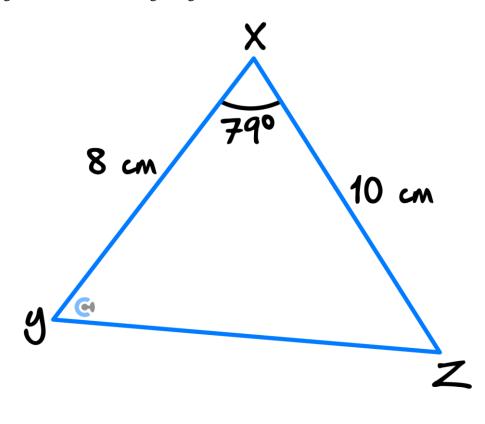
[3.5] - Advanced Trigonometric Functions Exam Skills (Checkpoints)

- ☐ [3.5.1] Simplify the Composition of Inverse
 Trigonometric Pg 52-55
- **[3.5.2]** Simplify $a \cos(x) + b \sin(x)$ Pg 56-59
- ☐ [3.5.3] Apply Product-to-Sum and Sum-to-Product Identities to Simplify Trigonometric Expressions Pg 60-64

[3.1-3.5] - Exam 1 Overall (Checkpoints) Pg 65-79

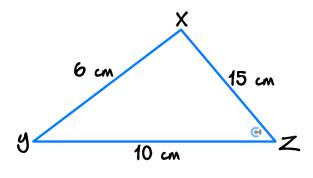
[3.1-3.5] - Exam 2 Overall (Checkpoints) Pg 80-99

Section A: [3.1] - Trigonometry I (Checkpoints)

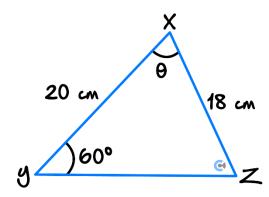


<u>Sub-Section</u>: [3.1.1] - Find Lengths, Angles and Area of Triangles Using Sine and Cosine Rule

Question 1

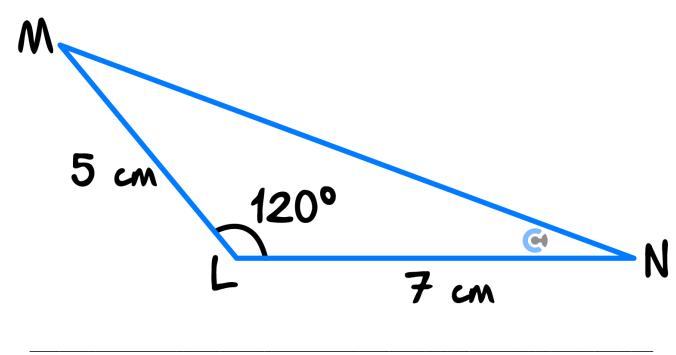

You may use a CAS for the following questions. Give your answers correct to two decimal places.

a. Find the length of YZ in the following triangle.



b. Find the angle YXZ in the following triangle.

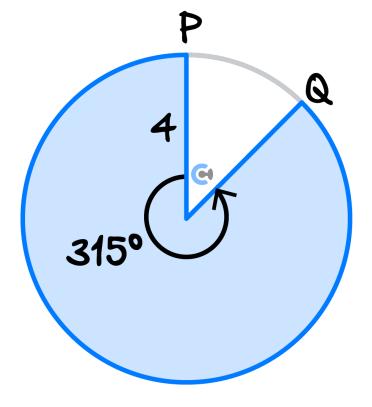
c. Find the angle θ in the following triangle given that $\angle XZY$ is acute.


Question 2 Tech-Active. Find the area of the following triangle. Give your answer correct to two decimal places.

Question 3 Tech-Active.

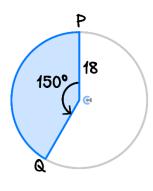
Find all side lengths and angles for the following triangle. Give your answers correct to two decimal places.

Space for Personal Notes

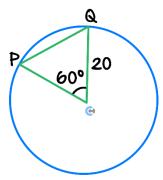


<u>Sub-Section</u>: [3.1.2] - Find Arc Lengths, Chord Lengths, Sector and Segment Areas

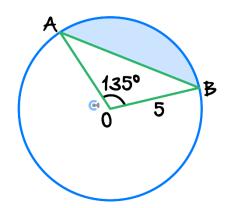
$\mathbf{\alpha}$	4 •	4
()11	iestion	4


Consider the following circles:

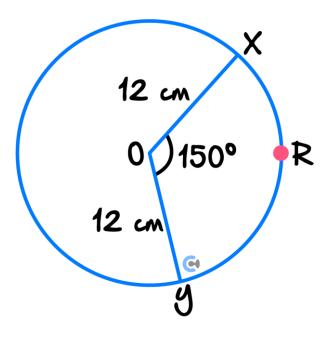
a. Find the area of the shaded sector.



b. Find the length of the arc PQ.



c. Find the length of the chord PQ.


d. Find the area of the shaded segment.

Question 5 Tech-Active.

A circle has a centre O and a radius of 12 cm. The angle subtended at O by arc XY has a magnitude of 150°.

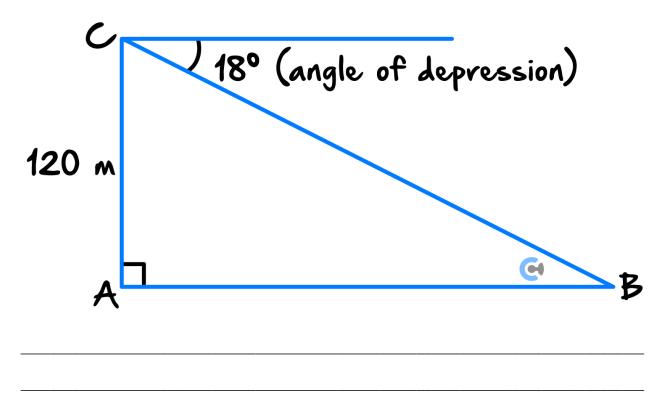
a.	Find the exact length of the chord XY. [USE: $\sin(75^\circ) = \frac{\sqrt{3}+1}{2\sqrt{2}}$]
b.	Find the exact length of the arc XY.
c.	Find the exact area of the minor sector <i>XOY</i> .

CONTOUREDUCATION

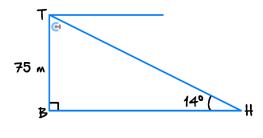
d.	Find the magnitude of the angle <i>XOR</i> , in degrees, if the minor arc has a length of 5 <i>cm</i> . Give your answer correct to two decimal places.

Question 6 Tech-Active.

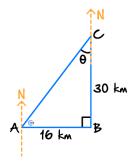
Two circles, each with a radius of 7 cm, have their centres 12 cm apart. Calculate the exact area of the region common to both circles and then round this result to two decimal places.



Sub-Section: [3.1.3] - Apply Angle of Elevation/Depression and Bearing to Solve Geometric Problems (Only 2D)


Question 7 Tech-Active.

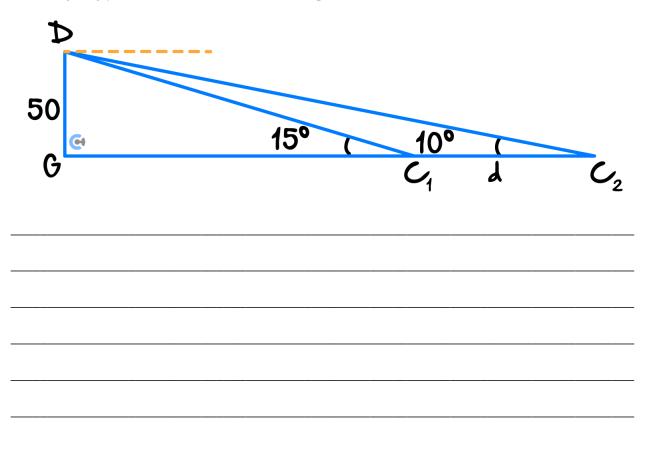
a. A cliff is 120 *m* high. A person standing at the top of the cliff observes a boat in the ocean at an angle of depression of 18°. Calculate the horizontal distance between the boat and the base of the cliff, correct to the nearest metre.



CONTOUREDUCATION

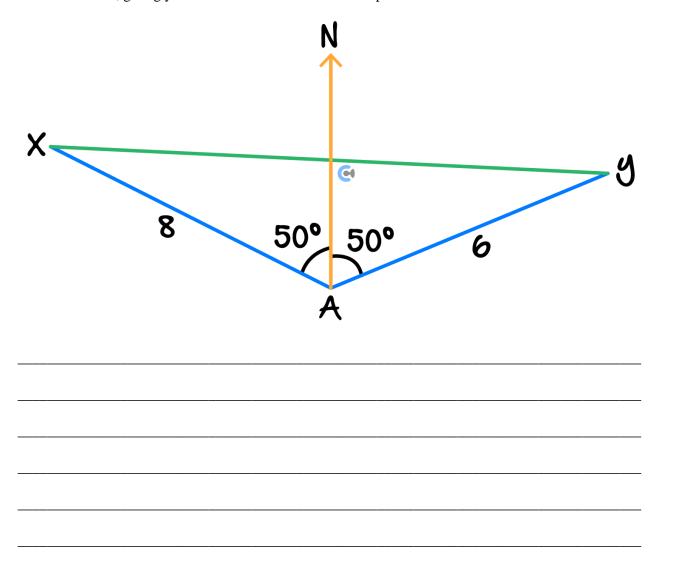
b. A tree stands 75 *m* tall. A hiker on the ground observes the top of the tree at an angle of elevation of 14°. Calculate the horizontal distance from the hiker to the base of the tree, correct to the nearest metre.

c. An airplane flies 16 km due east from Point A to Point B. It then changes direction and flies 30 km due north to Point C. Calculate the distance and bearing of Point C from Point A, giving your answers correct to two decimal places.



Question 8 Tech-Active.

A drone is hovering at a constant height of 50 m above a straight road. It tracks two cars moving along the road, both in line with each other. The angles of depression to the cars are 10° and 15° . Calculate the distance between the two cars, giving your answer correct to two decimal places.


Space for Personal Notes

Question 9 Tech-Active.

From an air traffic control tower, two airplanes X and Y are on bearings of 310° and 050°, respectively. The distance XA (from the tower to airplane X) is 8 km, and the distance YA (from the tower to airplane Y) is 6 km. Find the distance XY, giving your answer correct to two decimal places.

Space	for	Personal	Notes
Space		Ciscilai	. 10

Section B: [3.2] - Trigonometry II (Checkpoints)

Question 10					
Sin	aplify the following expressions:				
a.	$\cos(\pi - x)$				
b.	$\tan(\pi + x)$				

 $\mathbf{c.} \quad \sin\left(x - \frac{\pi}{2}\right)$

Question 11

If $cos(x) = \frac{5}{13}$, where x is an angle in the first quadrant, evaluate the following:

a. $cos(\pi - x)$

... cos(... ,.)

b. $\sin(\pi + x)$

- c. $\tan\left(\frac{\pi}{2} x\right)$

Question 12

If $sin(x) = \frac{6}{11}$, where $\frac{\pi}{2} \le x \le \pi$, evaluate the following:

- a. $\sin(\pi + x)$

CONTOUREDUCATION

b.	$-\tan\left(\frac{\pi}{2}+x\right)$
c.	$\cos(\pi - x)$

Space for Personal Notes

16 (v) 8 1
If $cos(x) = -\frac{8}{15}$, where x is an angle which lies in the third quadrant, evaluate $sin(\pi + x)$.

Space for Personal Notes

Sub-Section: [3.2.2] - Find Particular and General Solutions

Question 14

Solve the following trigonometric equations over the specified domain:

a. $2\cos(3x) = -\sqrt{3}$, for $x \in [0, \pi]$.

c.	$4\tan(x) - 2 = 2$, $x \in [-\pi, \pi]$.

Space for Personal Notes

Question 15

Find the general solution to the following trigonometric equations:

 $\mathbf{a.} \quad \sin\left(-3x + \frac{\pi}{4}\right) = \frac{1}{2}$

b. $2\cos\left(2x - \frac{\pi}{3}\right) = 1$

 $\cot\left(\frac{\pi}{3}x + \frac{\pi}{6}\right) = 1$

CONTOUREDUCATION

Question 16

Consider the function $f(x) = \sqrt{3} \tan \left(2x + \frac{\pi}{4}\right) - 1$.

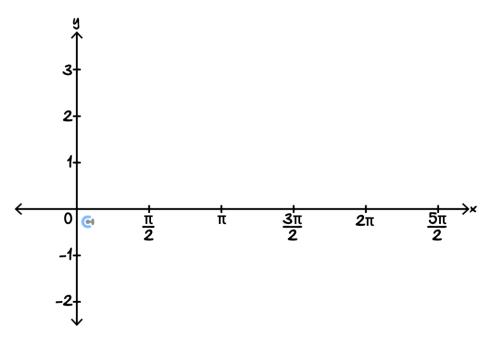
a. Find the general solution to f(x) = 0.

b. Hence, solve f(x) = 0 for $x \in \left[0, \frac{3\pi}{2}\right]$.

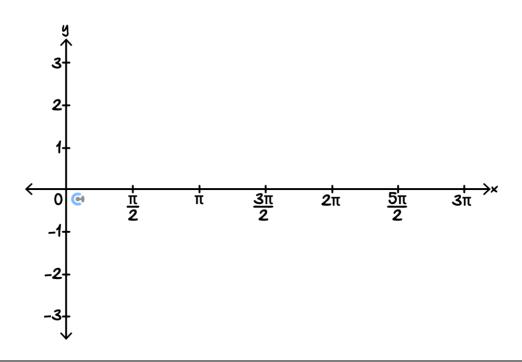
Space for Personal Notes

uestion 17 Tech-Active. In the general solution to $\sqrt{2}\cos(\pi(x+1)) = 1$.	

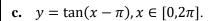
Space for Personal Notes

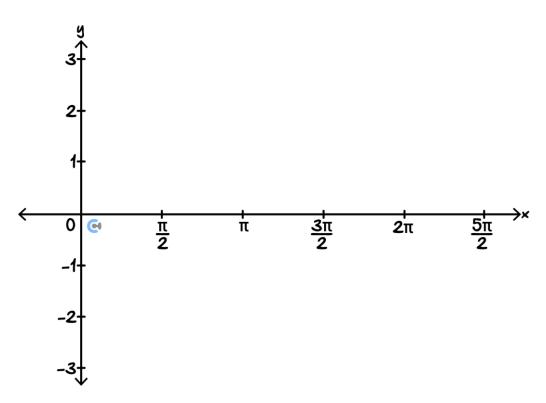

Sub-Section [3.2.3]: Graph Sine, Cosine and Tangent Functions

Question 18

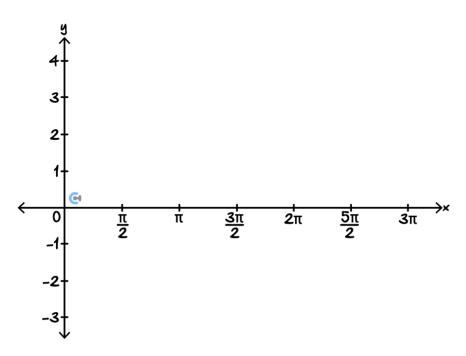

J

Sketch the graphs of the following functions over the indicated domain. Label all axes intercepts and endpoints with coordinates, and label asymptotes with equations.

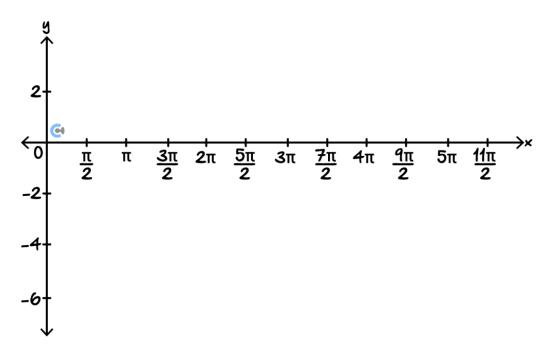

a. $y = \sin(2x), x \in [0,2\pi].$



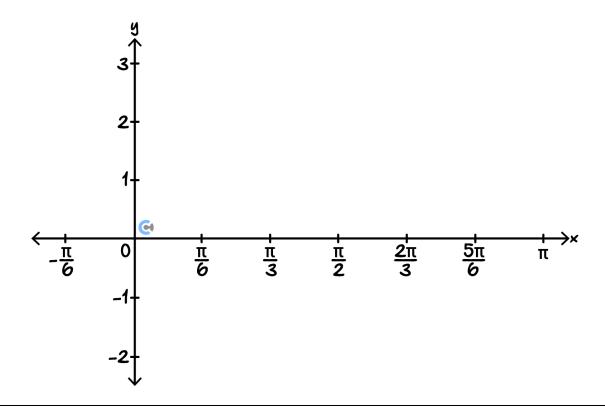
b. $y = -\cos\left(\frac{3x}{2}\right), x \in [0,3\pi].$



Question 19


Sketch the graphs of the following functions over the indicated domain. Label all axes intercepts, turning points and endpoints with coordinates, and label asymptotes with equations.

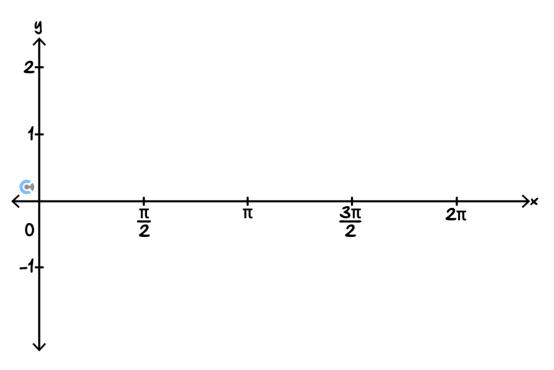
a.
$$y = 2\cos\left(x + \frac{\pi}{2}\right), x \in [0, 2\pi].$$



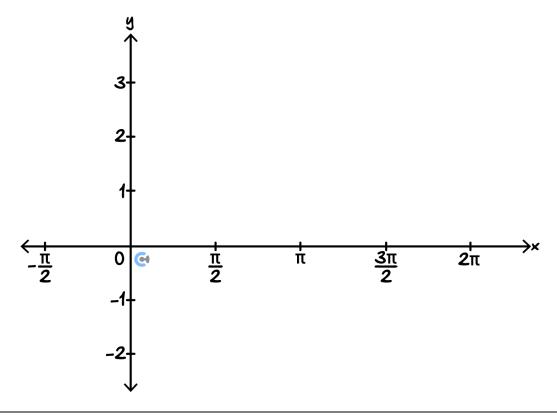
b. $y = -2\sin(x) - 2, x \in [0,5\pi].$

c. $y = -2 \tan \left(3x + \frac{\pi}{2}\right), x \in [0, \pi].$

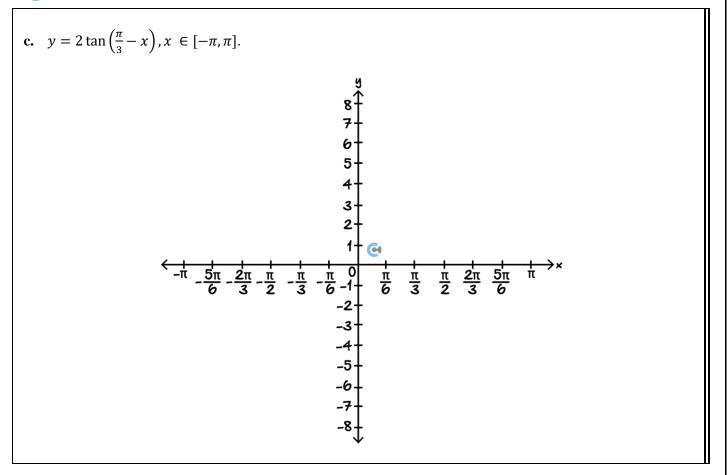
Space for Personal Notes



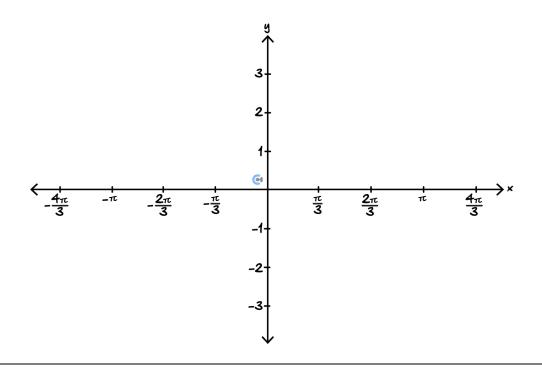
Question 20



Sketch the graphs of the following functions over the indicated domain. Label all axes intercepts, turning points and endpoints with coordinates, and label asymptotes with equations.


a.
$$y = \sin\left(3x - \frac{\pi}{6}\right), x \in [0, 2\pi].$$

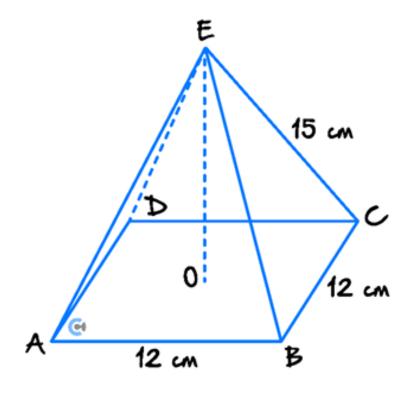
b.
$$y = 2\sin\left(\frac{\pi}{3} - 3x\right) + 1, x \in [0, 2\pi].$$



Question 21 Tech-Active.

Sketch the graph of the equation $y = 2\cos\left(2x - \frac{\pi}{4}\right)$. Label all axes intercepts, turning points and endpoints with coordinates.

Section C: [3.3] - Trigonometry Exam Skills (Checkpoints)

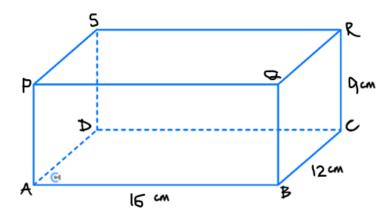


Sub-Section [3.3.1] and [3.3.2]: Apply Trigonometry to Solve Problems in 3D and Find the Angle between Planes

Question 22

A square pyramid PQRST stands on level horizontal ground. The vertex of the pyramid is at T. The points P, Q, R, S are the corners of a square of side 18 cm, whose diagonals intersect at the point O. Each of the sloping edges of the pyramid has a length of 24 cm.

a.	Calculate the length OR.		



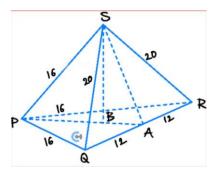
- **b.** Calculate the volume of the pyramid. (Recall: $V = \frac{1}{3} \times base \times height$)
- **c.** Calculate the total surface area of the pyramid.

Question 23

The figure shows a cuboid *ABCDPQRS* standing on level horizontal ground. The lengths of *AB*, *BC* and *CR* are 16 *cm*,12 *cm* and 9 *cm*, respectively.

•	Find the length of AR.
	Calculate the angle AR makes with the ground, correct to two decimal places.
	
	Determine the area of the triangle <i>ABY</i> .

The point *M* is the midpoint of *AB* and the point *N* lies on *AR*.


d. The point *M* is the midpoint of *AB* and the point *N* lies on *AR*. Calculate the length of *MN*, given that *MN* is perpendicular to *AR*. Give your answer correct to two decimal places.

Question 24

A pyramid PQRS has a triangular horizontal base PQR, where PQ = PR = 16 m and RQ = 24 m. The vertex of the pyramid S lies directly above the level of PQR so that SQ = SR = 20 m and SP = 16 m.

a. Show that the shortest distance of *S* from the base PQR is $2\sqrt{57}$ m.

b.	Calculate, in degrees correct to two decimal places, the acute angle between:					
	i.	The plane SQR and the plane PQR .				
						
	ii.	The edge SQ and the plane PQR .				
						
	Det	termine, as an exact surd, the shortest distance of P from the plane SQR .				
		NT: Compute the volume of the pyramid in two different ways.				

Section D: [3.4] - Advanced Trigonometric Functions (Checkpoints)

<u>Sub-Section [3.4.1]</u>: Trigonometric Identities and Solving Exact Values of Reciprocal Functions

Question 25				
Ev	Evaluate the following:			
a.	$\sec\left(\frac{\pi}{4}\right)$			
		_		
		-		
b.	$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$			
		_		
		_		
c.	$tan^{-1}(1)$			
		_		
		-		
Sp	pace for Personal Notes			

Onestion	26

Evaluate the following:

a. $\cot\left(\frac{11\pi}{6}\right)$

b. cosec $\left(\frac{7\pi}{3}\right)$

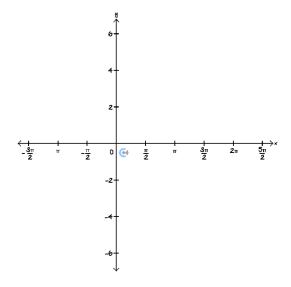
c. $\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)$

Space for Personal Notes

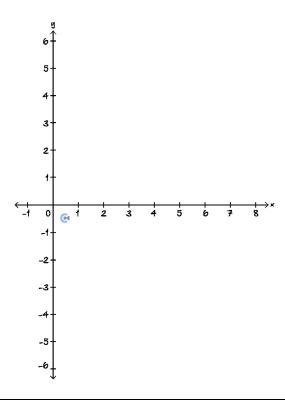
37

Question 27	
Prove the identity $(\cot x + \csc x)^2 = \frac{1 + \cos x}{1 - \cos x}$.	
	<u> </u>

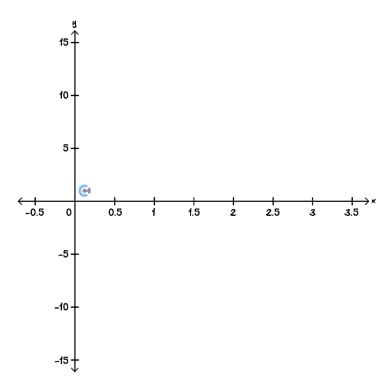
Space for Personal Notes	

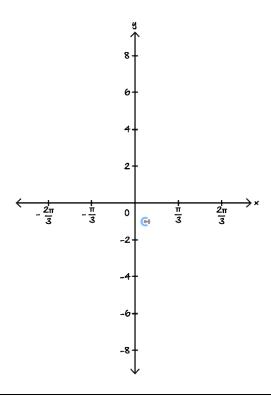


Sub-Section [3.4.2]: Graph Reciprocal Trigonometric Functions

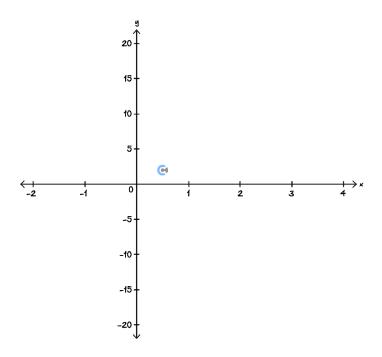

Question 28

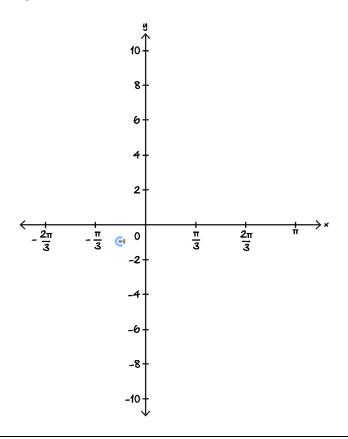
a. Sketch the graph of $y = 2\sec\left(x - \frac{\pi}{2}\right)$ for $-\pi < x < 2\pi$, labelling all stationary points, axes intercepts and asymptotes with their equations.


b. Sketch the graph of $\frac{\csc(x)}{2} - \frac{1}{2}$ for $0 < x < 2\pi$, labelling all stationary points, axes intercepts and asymptotes with their equations.



a. Sketch the graph of $y = 4\csc\left(7\pi x - \frac{2\pi}{3}\right)$ for $-1 \le x \le 3$, labelling all stationary points, axes intercepts and asymptotes with their equations.


b. Sketch the graph of $y = -\cot(\pi - 3x)$ for $-\frac{2\pi}{3} < x < \frac{2\pi}{3}$, labelling all stationary points, axes intercepts and asymptotes with their equations.



a. Sketch the graph of $y = 1 - \sqrt{3} \cot \left(\pi x - \frac{\pi}{3} \right)$ for $-1 \le x \le 3$, labelling all stationary points, axes intercepts and asymptotes with their equations.

b. Sketch the graph of $y = \cot\left(2x - \frac{\pi}{4}\right) + \sqrt{3}$ for $-\frac{\pi}{2} \le x \le \frac{3\pi}{4}$, labelling all stationary points, axes intercepts and asymptotes with their equations.

<u>Sub-Section [3.4.3]</u>: Apply Compound and Double Angle Formula to Solve Exact Values

Question 31	
Use a compound angle formula to evaluate $\sin\left(\frac{5\pi}{12}\right)$.	
Question 32	
(π)	
Use a double-angle formula to evaluate $\tan\left(-\frac{\pi}{8}\right)$.	
Use a double-angle formula to evaluate $\tan\left(-\frac{\pi}{8}\right)$.	
Use a double-angle formula to evaluate $\tan\left(-\frac{\pi}{8}\right)$.	
Use a double-angle formula to evaluate $\tan\left(-\frac{\pi}{8}\right)$.	
Use a double-angle formula to evaluate $\tan\left(-\frac{\pi}{8}\right)$.	
Use a double-angle formula to evaluate $\tan\left(-\frac{\pi}{8}\right)$.	
Use a double-angle formula to evaluate tan $\left(-\frac{\kappa}{8}\right)$.	

SM12 [3.0] - AOS 3 Revision - Contour Check

Ouestion	33
Quesuon	JJ

أزاز

Use a compound angle formula to evaluate $\cos\left(\frac{19\pi}{12}\right)$.

Question 34

Given that $cos(x - y) = \frac{7}{25}$ and $cot(x)cot(y) = \frac{4}{3}$, find cos(x + y).

Space for Personal Notes

<u>Sub-Section [3.4.4]</u>: Find Domain, Range and Rule of the Inverse Trigonometric Function

Question 35

Consider the function $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to R: f(x) = \frac{\tan(x)}{3}$.

a. State the domain of $f^{-1}(x)$.

b. State the range of $f^{-1}(x)$.

c.	Hence, or otherwise, find the rule of $f^{-1}(x)$.	
		-
		-
		-
		-
Sp	pace for Personal Notes	

Consider the function $f: \left[-\frac{9\pi}{4}, \frac{3\pi}{4} \right] \to R: f(x) = 2\sin\left(\frac{x}{3} + \frac{\pi}{4}\right) - \sqrt{2}$.

a. State the domain of $f^{-1}(x)$.

b. State the range of $f^{-1}(x)$.

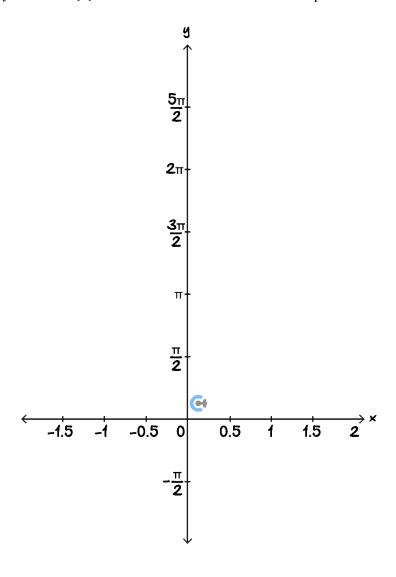
c. Hence, or otherwise, find the rule of $f^{-1}(x)$.

Consider the function $f: \left[\frac{5\pi}{3}, \frac{8\pi}{3}\right] \to R: f(x) = \sqrt{5}\cos\left(x + \frac{\pi}{3}\right)$.

a. State the domain of $f^{-1}(x)$.

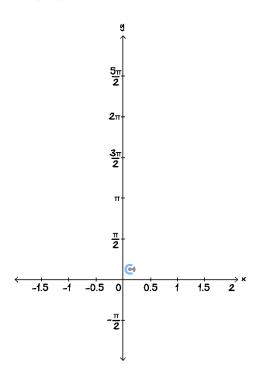
b. State the range of $f^{-1}(x)$.

c. Hence, or otherwise, find the rule of $f^{-1}(x)$.



Sub-Section [3.4.5]: Graphing Inverse Trigonometric Functions

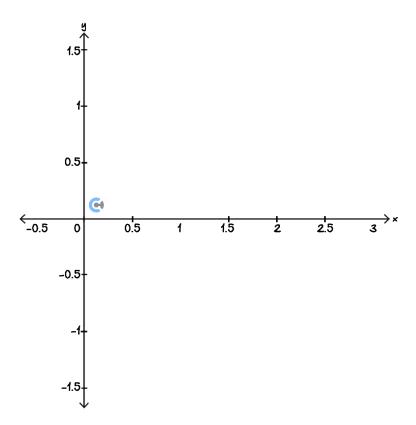
Question 38


a. Sketch the graph of $y = 2\sin^{-1}(x) + \pi$ on the axes below. Label all endpoints and axes intercepts.

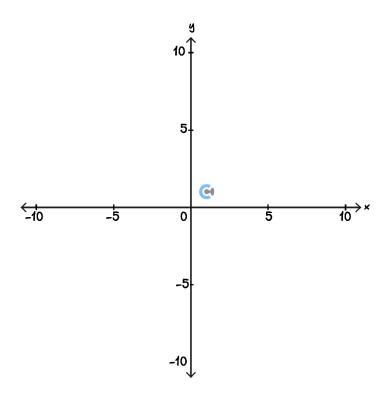
b.

i. Sketch the graph of $y = 2\cos^{-1}(-x)$ below.

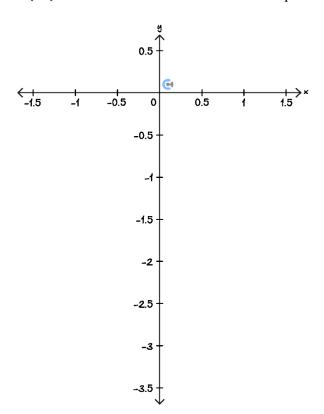
ii. What do you notice?

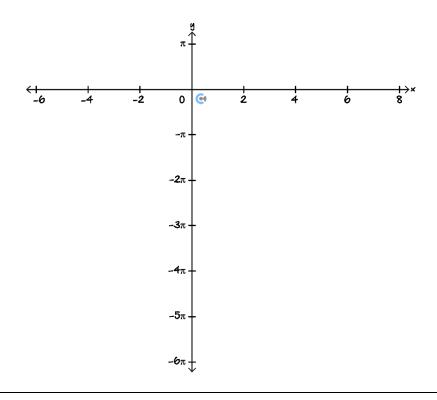


Space for Personal Notes



a. Sketch the graph of $y = -\frac{2}{\pi}\cos^{-1}(4-2x) + 1$ on the axes below, labelling all endpoints and axes intercepts.


b. Sketch the graph of $y = -3 \tan^{-1}(2x + 1)$ below, labelling all key points and asymptotes.



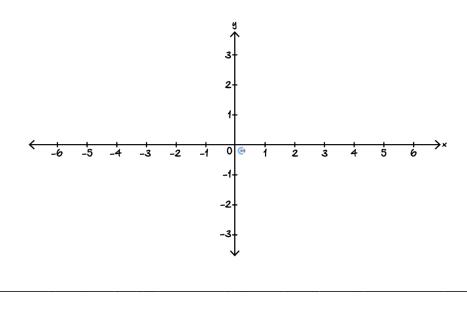
a. Sketch the graph of $y = \sin^{-1}(2x) - \sqrt{3}$ on the axes below. Label all endpoints.

b. Sketch the graph of $y = \pi \tan^{-1} \left(\frac{x}{2} - 1 \right) - \pi^2$ on the axes below. Label all axes intercepts and asymptotes with their equation.

SM12 [3.0] - AOS 3 Revision - Contour Check

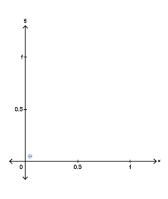
Section E: [3.5] - Advanced Trigonometric Functions Exam Skills (Checkpoints)

<u>Sub-Section [3.5.1]</u>: Simplify the Composition of Inverse Trigonometric

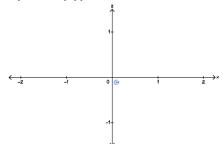

Qı	nestion 41	
a.	Simplify $\tan\left(\arctan\left(\frac{3}{4}\right)\right)$.	
		-
		-
		-
		-
		-
b.	Simplify cos(arctan(5)).	
		-
		-
		-
		-
		-

c. Simplify $\sin\left(\arccos\left(\frac{5}{13}\right)\right)$.

Question 42



a. Simplify and sketch the graph of cos(arctan(x + 2)).



b. Simplify and sketch the graph of tan(arcsin(3x - 1)).

c. Simplify and sketch the graph of sin(arctan(x)).

Question 43		

a.	Simplify and determine the maximal domain of $g(x) = \cos(\arcsin(3x - 2)) + \sin(\arctan(x + 1))$.
b.	Simplify and determine the maximal domain of $g(x) = \sin(\arccos(2 - x^2)) + \cos(\arcsin(x + 2))$.
c.	Simplify and determine the maximal domain of $g(x) = \cos(\arcsin(3x+1)) + \sin(\arctan(2x))$.

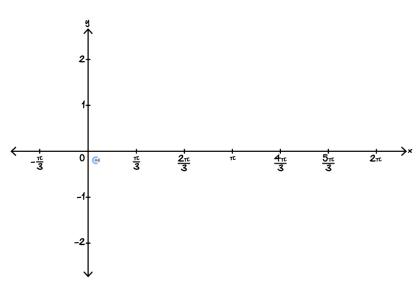
Sub-Section [3.5.2]: Simplify $a \cos(x) + b \sin(x)$

Question 44				
•	Express $3\sin(x) + 3\cos(x)$ in the form of $r\sin(x - \alpha)$.			
	Express $cos(x) - sin(x)$ in the form of $r cos(x - \alpha)$.			

 $(x) + 3\cos(x) i$		 	

Space for Personal Notes

Question 45



a. Solve cos(x) + sin(x) = 1 for $0 \le x \le 2\pi$.

b. Solve $4\cos(x) + 4\sqrt{3}\sin(x) = 2$ for $0 \le x \le 2\pi$.

c. Sketch the graph of $f(x) = \sqrt{3}\sin(x) + \cos(x)$ for $0 \le x \le 2\pi$. Label all turning points, endpoints, and axes intercepts with coordinates.

Question 46

a. Find the maximum and minimum values if $h(x) = 7\sin(x) + 24\cos(x)$.

b. Solve $3 \sin \left(x - \frac{\pi}{4} \right) + 3\sqrt{3} \cos \left(x - \frac{\pi}{4} \right) = 0$ for $0 \le x \le 2\pi$.

c. Show that for a > 0, $a \sin(4x) - b \cos^2(2x) = \sqrt{4a^2 + b^2} \cos(2x) \sin(2x - \alpha)$, where $\beta = \arctan\left(\frac{b}{2a}\right)$.

<u>Sub-Section [3.5.3]</u>: Apply Product-to-Sum and Sum-to-Product Identities to Simplify Trigonometric Expressions

Question 47			
a.	Express $\sin(5\theta)\cos(3\theta)$ as a sum or difference.		
b.	Express $2\cos(4B)\cos(6B)$ as a sum or difference.		

•	Express $sin(7A) cos(4A)$ as a sum or difference.
	Express $\sin(3\alpha) + \sin(4\alpha)$ as a product.
	·
	Express $cos(3x) + cos(3y)$ as a product.

Express $cos(x + k) - sin(x)$ as a product.

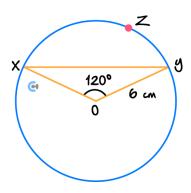
Space for Personal Notes

a. Solve $\sin(2\theta) + \sin(4\theta) = 0$ for $0 \le \theta \le \pi$.

b. Solve cos(3x) - cos(x) = 0 for $0 \le \theta \le \pi$.

c. Solve $\sin(z) - \sin\left(\frac{\pi}{3} - z\right) = 0$ for $0 \le \theta \le 2\pi$.

Question 49


a.	Express $ b \cos(2y) - b \cos(4y)$ as a product and hence, determine its minimum value in terms of b.
b.	If $p + q + r = \pi$, show that $\sin(p) + \sin(q) + \sin(r) = 4\cos\left(\frac{p}{2}\right)\cos\left(\frac{q}{2}\right)\cos\left(\frac{r}{2}\right)$.
2.	Solve the equation $cos(4x) + cos(2x) - cos(3x) = 0$ for $x \in [0, 2\pi]$.

Section F: [3.1-3.5] - Exam 1 Overall (Checkpoints) (19 Marks)

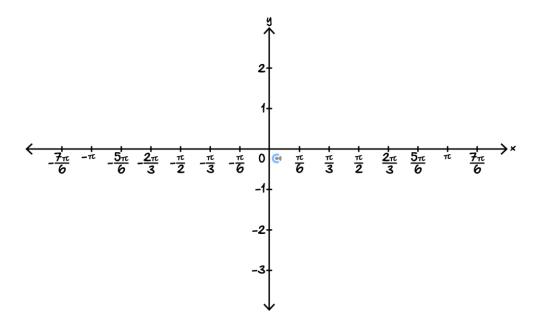
Question 50

Consider a circle of radius 6 cm, with centre 0. The angle subtended at 0 by the arc XY has a magnitude of 120° . Exact answers are required for all parts, and no CAS is allowed.

a.

ii. Find the length of the arc XY.

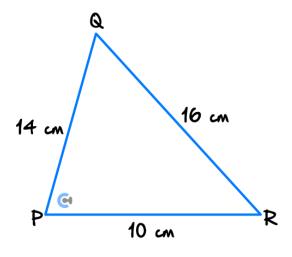
b.	Find the area of the minor segment formed by the chord <i>XY</i> .	
c.	The point <i>Z</i> is located between <i>X</i> and <i>Y</i> such that it divides the arc <i>XY</i> in a 5: 3 ratio. Find the length of the a <i>ZY</i> and the angle <i>YOZ</i> in degrees.	rc
<u> </u>		
Sp	pace for Personal Notes	


Consider the function $f(x) = 3\sin\left(2x + \frac{\pi}{4}\right) + \cos\left(2x + \frac{3\pi}{4}\right) - 1$.

a. Express f(x) in the form $f(x) = a \sin(2x + b) - 1$.

b. Find the general solution to f(x) = 0.

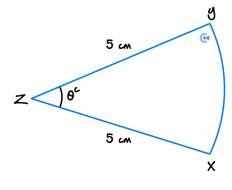
c. Find all solutions to f(x) = 0 for $x \in [-\pi, \pi]$.


d. Sketch the graph of y = f(x) on the axes below. Label all axes' intercepts, turning points and endpoints with coordinates.

Space for Personal Notes

The figure below shows a triangle PQR where the following information is given. $|PQ| = 14 \, cm$, $|QR| = 16 \, cm$, $|PR| = 10 \, cm$.

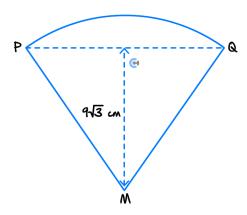
a. Find the size of the angle $\angle PRQ$ in degrees.



b. Hence, determine as an exact surd the area of the triangle PQR.

Question 53

The figure below shows a circular sector XYZ of radius 5 cm subtending an angle θ radians at Z. Given that the perimeter of the sector is equal to the area of the sector, find the value of θ in radians.


Question	54

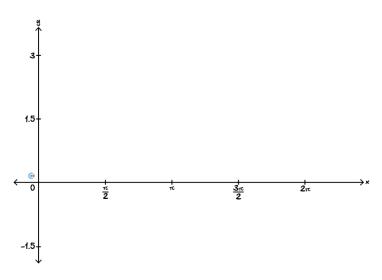
Prove the identity: $\frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$

The figure above shows a badge in the shape of a circular sector MPQ, centred at M. The triangle MPQ is equilateral and its perpendicular height is $9\sqrt{3}$ cm.

a.	Find the length of <i>MP</i> .

b. Determine in terms of π :

i. The area of the badge.


ii.	The perimeter of the badge.
-	
-	
-	
-	

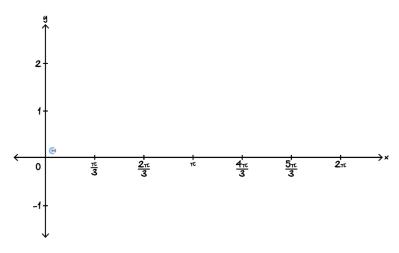
Consider the function $g(x) = 2 \sin(3x - \frac{\pi}{4}) + 1$.

a. Find the general solution to f(x) = 0.

b. Sketch the graph of y = f(x) for $x \in [0, 2\pi]$ on the axes below. Label all axes intercepts, turning points and endpoints with coordinates.

c. Find the values of x for which f(x) > 2.

d. The function g(x) has an equivalent expression $g(x) = 2\cos\left(3x + \frac{a\pi}{4}\right) + 1$, where 0 < a < 10. State the value of a.



Question 57

a. Solve the equation $\sin(3x) + \sin(5x) = 0$, where $x \in [0, \pi]$.

- **b.** Consider the function $g:[0,2\pi]\to R$, where $g(x)=\sqrt{2}\cos\left(x-\frac{\pi}{4}\right)+\cos\left(x+\frac{\pi}{2}\right)$.
 - i. Sketch the graph of g on the axes below. Label all axes intercepts, turning points, and endpoints with coordinates.

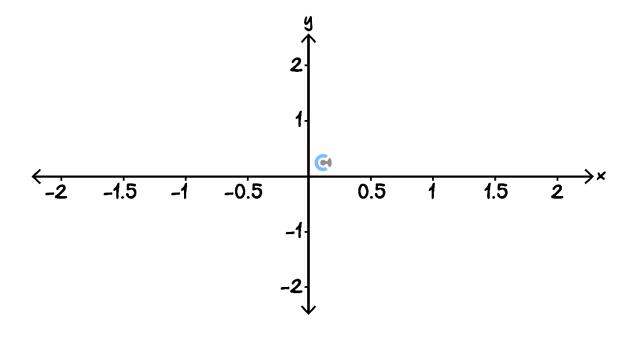
ii. Use your sketch to solve the equation $g(x) = \frac{1}{2}$.

Question 58 (3 marks)

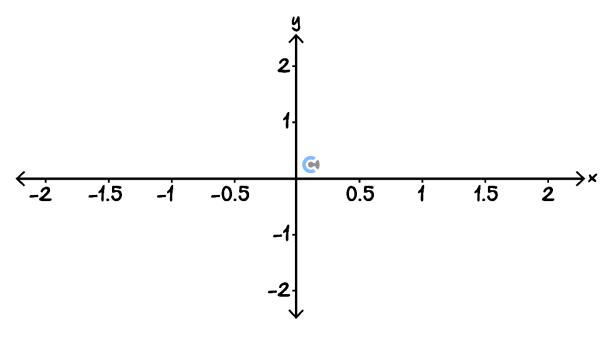
Given that $\cos(x - y) = \frac{3}{5}$ and $\tan(x) \tan(y) = 2$, find $\cos(x + y)$.

	In that $cot(2x) + \frac{1}{2}tan(x) = a cot(x)$, use a suitable double angle formula to find the value of $a, a \in R$.	
nve	if that $\cot(2x) + \frac{1}{2}\tan(x) = a\cot(x)$, use a suitable double angle formula to find the value of $a, a \in \mathbb{R}$.	
-		
-		
_		
_		
-		
ues	etion 60 (3 marks)	
ind	all real solutions of $tan(2x) = -tan(x)$.	
-		
-		
-		
-		
-		
-		
-		
-		
- - - -		
-		
- - - -		
- - -		
- - -		

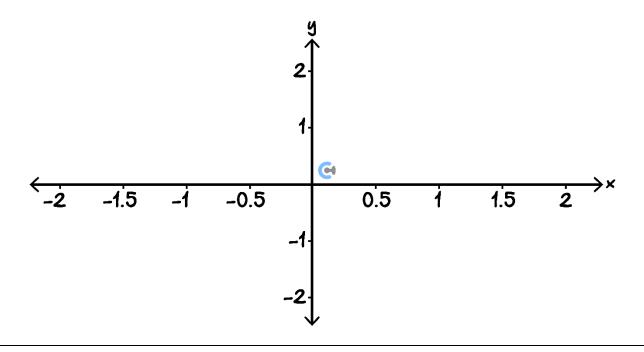
76


Question 61 (3 marks)

Find $\sin(t)$, given that $t = \arccos\left(\frac{12}{13}\right) + \arctan\left(\frac{3}{4}\right)$.


Question 62 (4 marks)

Consider the function $f: [-1,1] \to R$, $f(x) = \arccos(x) - \frac{\pi}{2}$.


a. Sketch the graph of f on the axes below, labelling the endpoints with their coordinates. (2 marks)

b. Sketch the graph of y = |f(x)| on the axes below. (1 mark)

c. Sketch the graph of y = f(|x|) on the axes below. (1 mark)

Question 63 (3 marks)						
If $sin(x) = 3 cos(x)$, find the value of $sin(2x)$, where $x \in (0, \frac{\pi}{2})$.						
_						
_						
_						
_						
_						
_						
_						
_						
Spac	e for Personal Notes					

Section G: [3.1-3.5] - Exam 2 Overall (Checkpoints) (36 Marks)

Question 64

A building is 72 m tall. From the top of the building, the angle of depression to a certain point on level ground is 30° . How far is that point from the base of the building?

- **A.** $36\sqrt{3} \ m$
- **B.** $48\sqrt{3} \ m$
- **C.** $72\sqrt{3} \ m$
- **D.** $60\sqrt{3} \ m$

Question 65

If $\cot(\theta) = -\frac{12}{5}$ and $\theta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, then $\sin(\theta)$ is equal to:

- A. $\frac{12}{13}$
- **B.** $-\frac{5}{13}$
- C. $-\frac{12}{13}$
- **D.** $\frac{5}{13}$

Question 66

The solutions of the equation: $2 \sin \left(2x - \frac{\pi}{4}\right) + 1 = 0$ are:

- **A.** $x = \pi n + \frac{17\pi}{24}$ or $x = \pi n \frac{25\pi}{24}$, $n \in \mathbb{Z}$.
- **B.** $x = \pi n + \frac{17\pi}{24}$ or $x = \pi n + \frac{25\pi}{24}$, $n \in \mathbb{Z}$.
- C. $x = \pi n \frac{17\pi}{24}$ or $x = \pi n + \frac{25\pi}{24}$, $n \in \mathbb{Z}$.
- **D.** $x = \pi n \frac{17\pi}{24}$ or $x = \pi n \frac{25\pi}{24}$, $n \in \mathbb{Z}$.

Question 67

Let $\sin(\theta) = \frac{-7}{13}$ and $\cos^2(\alpha) = \frac{81}{169}$, where $\theta \in \left[\pi, \frac{3\pi}{2}\right]$ and $\alpha \in \left[\frac{3\pi}{2}, 2\pi\right]$. The value of $\sin(\theta) + \cos(\alpha)$ is:

- **A.** $\frac{2}{13}$
- **B.** $-\frac{2}{13}$
- C. $\frac{16}{13}$
- **D.** $-\frac{16}{13}$

Question 68

Jack's line of sight, while looking at a bird on top of a tree, makes a 30° angle of elevation. He then walks 150 metres toward the tree to observe the bird more closely, causing his line of sight to make a 45° angle of elevation. How far was Jack from the tree initially?

- **A.** $\frac{150\sqrt{3}}{\sqrt{3}+1}$
- **B.** $\frac{150\sqrt{3}}{\sqrt{3}-1}$
- **C.** $50\sqrt{3}$
- **D.** $75\sqrt{3}$

Question 69 (1 mark)

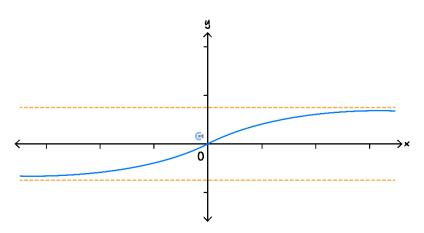
The implied domain of $y = \arccos\left(\frac{x-a}{b}\right)$, where b > 0 is:

- **A.** [-1, 1]
- **B.** [a b, a + b]
- C. [a-1, a+1]
- **D.** $[a, a + b\pi]$
- **E.** [-b, b]

Question 70 (1 mark)

The implied domain of $f(x) = 2\cos^{-1}\left(\frac{1}{x}\right)$ is:

- $\mathbf{A}. R$
- **B.** [-1,1]
- C. $(-\infty, -1] \cup [1, \infty)$
- **D.** $R \setminus \{0\}$
- **E.** $[-1,1]\setminus\{0\}$


Question 71 (1 mark)

The solutions to $cos(x) > \frac{1}{4}cosec(x)$ for $x = (0, 2\pi) \setminus \{\pi\}$ are given by:

- **A.** $x \in \left(\frac{\pi}{12}, \frac{5\pi}{12}\right) \cup \left(\frac{5\pi}{12}, \frac{13\pi}{12}\right) \cup \left(\frac{17\pi}{12}, 2\pi\right)$
- **B.** $x \in \left(\frac{\pi}{12}, \frac{5\pi}{12}\right) \cup \left(\frac{13\pi}{12}, \frac{17\pi}{12}\right)$
- C. $x \in \left(\frac{\pi}{12}, \frac{5\pi}{12}\right) \cup \left(\pi, \frac{13\pi}{12}\right) \cup \left(\frac{13\pi}{12}, 2\pi\right)$
- **D.** $x \in \left(\frac{\pi}{12}, \frac{13\pi}{12}\right) \cup \left(\frac{17\pi}{12}, 2\pi\right)$
- **E.** $x \in \left(\frac{\pi}{12}, \frac{5\pi}{12}\right) \cup \left(\pi, \frac{13\pi}{12}\right) \cup \left(\frac{17\pi}{12}, 2\pi\right)$

Question 72 (1 mark)

Part of the graph of $y = \frac{1}{2} \tan^{-1}(x)$ is shown below:

The equations of its asymptotes are:

A.
$$y = \pm \frac{1}{2}$$

B.
$$y = \pm \frac{3}{4}$$

C.
$$y = \pm 1$$

D.
$$y = \pm \frac{\pi}{2}$$

E.
$$y = \pm \frac{\pi}{4}$$

Question 73 (1 mark)

Consider the function f with rule $f(x) = -\frac{1}{\sqrt{\sin^{-1}(cx+d)}}$, where $c, d \in R$ and c > 0. The domain of f is:

$$\mathbf{A.} \ \ x > -\frac{d}{c}$$

$$\mathbf{B.} \quad -\frac{d}{c} < \chi \le \frac{1-d}{c}$$

$$C. \frac{-1-d}{c} \le x \le \frac{1-d}{c}$$

D.
$$x \in R \setminus \left\{ -\frac{d}{c} \right\}$$

E.
$$x \in R$$

Question 74 (1 mark)

If cos(x) = -a and cot(x) = b, where a, b > 0, then cosec(-x) is equal to:

- A. $\frac{b}{a}$
- **B.** $-\frac{b}{a}$
- C. $-\frac{a}{b}$
- **D.** $\frac{a}{b}$
- \mathbf{E} . -ab

Question 75 (1 mark)

The implied domain of the function with rule $f(x) = 1 - \sec\left(x + \frac{\pi}{4}\right)$ is:

- **A.** *R*
- **B.** [0, 2]
- C. $R \setminus \left\{ \frac{(4n-1)\pi}{4} \right\}$, $n \in \mathbb{Z}$
- **D.** $R \setminus \left\{ \frac{(4n+1)\pi}{4} \right\}$, $n \in Z$
- **E.** $R \setminus \left\{ \frac{(2n-1)\pi}{2} \right\}$, $n \in Z$

Question 76 (1 mark)

A function f has the rule $f(x) = |b \cos^{-1}(x) - a|$, where a > 0, b > 0 and $a < \frac{b\pi}{2}$. The range of f is:

- **A.** $[-a, b\pi a]$
- **B.** $[0, b\pi a]$
- C. $[a, b\pi a]$
- **D.** $[0, b\pi + a]$
- **E.** $[a-b\pi,a]$

Question 77 (1 mark)

Let $f(x) = \frac{\sqrt{x-1}}{x}$ over its implied domain and $g(x) = \csc^2 x$ for $0 < x < \frac{\pi}{2}$.

The rule for f(g(x)) and the range, respectively, are given by:

- **A.** $f(g(x)) = \csc^2\left(\frac{\sqrt{x-1}}{x}\right), [1, \infty)$
- **B.** $f(g(x)) = \csc^2\left(\frac{\sqrt{x-1}}{x}\right), [2, \infty)$
- C. $f(g(x)) = \sin(x)\cos(x), [-0.5, 0.5] \setminus \{0\}$
- **D.** $f(g(x)) = \sin(x)\cos(x), \left(0, \frac{1}{2}\right)$
- **E.** $f(g(x)) = \frac{1}{2}\sin(2x), (0, \frac{1}{2})$

Question 78 (1 mark)

Let
$$f(x) = \frac{1}{\sec(3x) + \frac{3}{2}}$$
.

The number of asymptotes that the graph of f has in the interval $\left[-\frac{\pi}{6}, \pi\right]$ is:

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 5
- **E.** 6

Question 79 (1 mark)

The implied domain of the function with rule $f(x) = \cos^{-1}(\log_e(bx)), b > 0$ is:

- **A.** (0, 1]
- **B.** [1, e]
- C. $\left[\frac{1}{b}, \frac{e}{b}\right]$
- **D.** $\left[\frac{1}{b}, \frac{e^{\pi}}{b}\right]$
- **E.** $\left[\frac{1}{be}, \frac{e}{b}\right]$

Question 80 (1 mark)

The expression $1 - \frac{4 \sin^2(x)}{\tan^2(x) + 1}$ simplifies to:

- **A.** sin(x) cos(x)
- **B.** $1 2\cos^2(2x)$
- C. $2\sin(2x)$
- **D.** $2\sin^2(2x)$
- **E.** $\cos^2(2x)$

Question 81 (1 mark)

In the interval $-\pi \le x \le \pi$, the graph of $y = a + \sec(x)$, where $a \in R$, has two x-intercepts when:

- **A.** $0 \le a \le 1$
- **B.** -1 < a < 1
- **C.** $a \le -1 \text{ or } a > 1$
- **D.** $-1 \le a < 0$
- **E.** a < -1 or $a \ge 1$

Question 82 (1 mark)

Given that $\sin(x) = a$, where $x \in \left(\frac{3\pi}{2}, 2\pi\right)$, the $\cos\left(\frac{x}{2}\right)$ is equal to:

- **A.** $-\frac{\sqrt{1+\sqrt{1-a^2}}}{\sqrt{2}}$
- $\mathbf{B.} \ \frac{\sqrt{1-\sqrt{a^2-1}}}{\sqrt{2}}$
- $\mathbf{C.} \ \frac{\sqrt{1+\sqrt{1-a^2}}}{\sqrt{2}}$
- **D.** $-\frac{\sqrt{\sqrt{1-a^2}-1}}{\sqrt{2}}$

Question 83 (1 mark)

For the function $f: R \to R$, $f(x) = k \arctan(ax - b) + c$, where k > 0, c > 0 and a, b = R, f(x) > 0 if:

- A. $c < \frac{k\pi}{2}$
- **B.** $c \ge \frac{k\pi}{2}$
- C. $x > \frac{b}{a}$
- **D.** $c + k > \frac{\pi}{2}$
- $\mathbf{E}. \quad c \ge \frac{\pi}{2}$

Question 84 (1 mark)

If $sin(\theta + \emptyset) = a$ and $sin(\theta - \emptyset) = b$, then $sin(\theta) cos(\emptyset)$ is equal to:

- **A.** *ab*
- **B.** $\sqrt{a^2 + b^2}$
- C. \sqrt{ab}
- **D.** $\sqrt{a^2 b^2}$
- $\mathbf{E.} \quad \frac{a+b}{2}$

Question 85 (1 mark)

Let $f(x) = \csc(x)$. The graph of f is transformed by:

- \blacktriangleright A dilation by a factor of 3 from the *x*-axis, followed by,
- A translation of 1 unit horizontally to the right, followed by,
- A dilation by a factor of $\frac{1}{2}$ from the y-axis.

The rule of the transformed graph is:

- **A.** $g(x) = 2\csc(3x + 1)$
- **B.** $g(x) = 3\csc(2x 1)$
- **C.** $g(x) = 3\csc(2(x-1))$
- $\mathbf{D.} \ \ g(x) = 2\mathrm{cosec}\left(\frac{x}{3} 1\right)$
- **E.** $g(x) = 3\csc\left(\frac{x-1}{2}\right)$

Question 86 (1 mark)

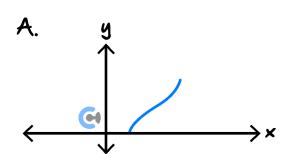
Let $f(x) = \frac{\sqrt{x+1}}{x}$ and $g(x) = \tan^2(x)$, where $0 < x < \frac{\pi}{2}$. f(g(x)) is equal to:

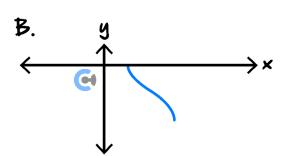
- A. $\sin(x) \sec^2(x)$
- **B.** $sec(x) tan^2(x)$
- C. $cos(x) cot^2(x)$
- **D.** $cos(x) cosec^2(x)$
- **E.** $\csc(x)\cos^2(x)$

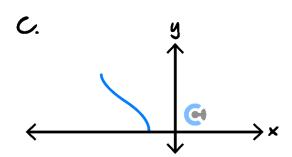
Question 87 (1 mark)

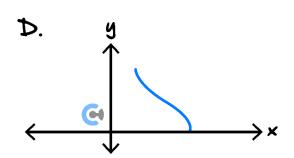
The implied domain of the function with rule $f(x) = \frac{3x}{\frac{\pi}{2} - \arccos(2-x)}$ is:

- **A.** [1, 3]
- **B.** [-1,1]
- **C.** $[0,1] \cup (1,2]$
- **D.** $[-1,0) \cup (0,1]$
- **E.** $[1,2) \cup (2,3]$


Question 88 (1 mark)


The maximal domain and range of the function $f(x) = a \cos^{-1}(bx) + c$, where a, b, and c are real constants with a > 0, b < 0 and c > 0, are respectively:


- **A.** $[0, \pi]$ and [-a, a]
- **B.** $[0, \pi]$ and [-a + c, a + c]
- C. $\left[-\frac{1}{b}, \frac{1}{b}\right]$ and $[c, a\pi + c]$
- **D.** $\left[\frac{1}{b}, -\frac{1}{b}\right]$ and $[c, \alpha\pi + c]$
- **E.** $\left[\frac{1}{b}, -\frac{1}{b}\right]$ and $\left[-a\pi + c, a\pi + c\right]$


Question 89 (1 mark)

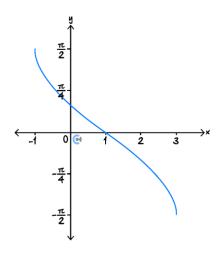

The graph of $y = \cos^{-1}(2 - bx)$, where b is a positive real constant, could be:

Question 90 (1 mark)

If the implied domain of $y = \sin(\cos^{-1}(ax - 1))$, where $a \in R \setminus \{0\}$, is the same as the range, then the value of a is:

- **A.** -2
- **B.** -1
- **C.** 1
- **D.** 2
- **E.** 3

Question 91 (1 mark)


The implied domain and range of $f(x) = \sin(\cos^{-1}(1-2x))$ are respectively:

- **A.** [0, 1] and [0, 1]
- **B.** [-1, 0] and [0, 1]
- **C.** R and [-1, 1]
- **D.** [0, 1] and [1, 1]
- **E.** R and [0, 1]

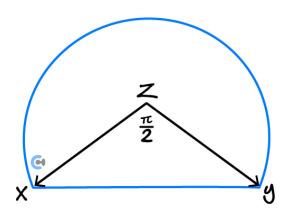
Question 92 (1 mark)

Let $f(x) = \arcsin(x)$ and g(x) = ax + b, where $a, b \in R$.

The graph of y = f(g(x)) is shown below.

The values of a and b are, respectively:

- A. $\frac{1}{2}$ and $\frac{1}{2}$
- **B.** $-\frac{1}{2}$ and $-\frac{1}{2}$
- C. $-\frac{1}{2}$ and $\frac{1}{2}$
- **D.** $\frac{1}{2}$ and 1
- **E.** $-\frac{1}{2}$ and 1


Question 93 (1 mark)

The solutions of $\frac{1+5\sin(x)\cos(x)}{\cos^2(x)} - 7 = 0$ can be found by solving:

- **A.** $(\tan(x) 2)(\tan(x) + 3) = 0$
- **B.** $(\tan(x) 1)(\tan(x) + 7) = 0$
- C. $(\tan(x) 3)(\tan(x) 2) = 0$
- **D.** $(\tan(x) 1)(\tan(x) + 6) = 0$
- **E.** $(\tan(x) + 1)(\tan(x) + 6) = 0$

Question 94

The figure below shows the cross-section of a railway tunnel, modelled as the major segment of a circle, centre at Z and radius of 5 m. The angle $\angle XZY$ is $\frac{\pi}{2}$ radians.

a. Find the exact length of XY.

b.	Determine the area of the triangle <i>ACB</i> .
c.	Find the cross-sectional area of the tunnel.
<u>ر</u>	pace for Personal Notes
31	ace for Personal Notes

Ques	tion	95
Vuco	CIUII	

The distance between the town of Algebraville (A) and the town of Baseville (B) is 80 km. Baseville is on a bearing of 80° from Algebraville.

The village of Contourville (C) is on a bearing of 110° from Algebraville and on a bearing of 190° from Baseville. The village of Desmosville (D) is on a bearing of 150° from Algebraville and on a bearing of 230° from Baseville.

a.	Fin	nd, correct to one decimal place where appropriate, the distance between:							
	i.	Baseville and Contourville.							
	ii.	Baseville and Desmosville.							

	iii. Contourville and Desmosville.	
		
b.	Find the bearing of Desmosville from Contourville.	
Sna	ace for Personal Notes	
) 	ice for reisonal Notes	

Question	96
Oucsuon	70

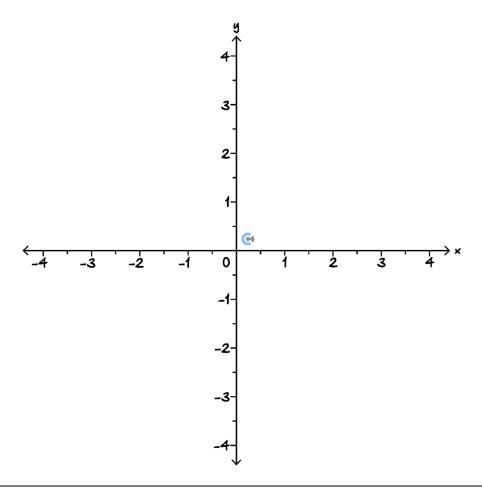
The population of birds in a particular location varies according to the rule:

$$b(t) = 1200 + 300 \cos\left(\frac{\pi t}{6}\right),$$

where b is the number of birds and t is the number of months after 1 April 2020.

a. Find the period and amplitude of the function b(t).

_				
-	 			

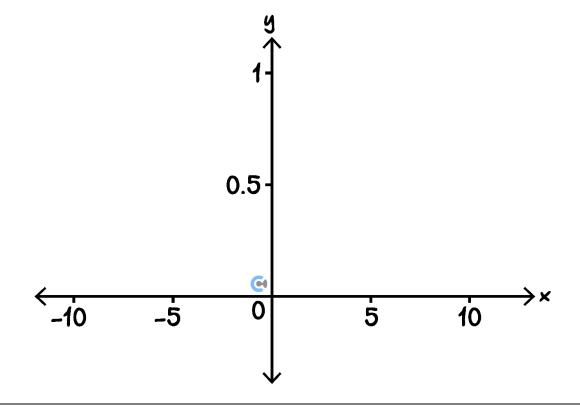

b. Find the maximum and minimum populations of birds in this location.

c.	Find $b(4)$.	
d.	Over the 10 months from 1 April 2020, find the fraction of time when the population of birds in this location was less than $b(4)$.	
Qu	estion 97 (5 marks)	
Consider the function $f: D \to R$, where $f(x) = 2\arcsin(x^2 - 1)$.		
a.	Determine the maximal domain D and the range of f . (2 marks)	

b. Sketch the graph of y = f(x) on the axes below, labelling any endpoints and the y-intercept with their coordinates. (3 marks)

Question 98 (6 marks)

a.


i. Use an appropriate double-angle formula with $t = \tan\left(\frac{5\pi}{12}\right)$ to deduce a quadratic equation of the form $t^2 + bt + c = 0$, where b and c are real values. (2 marks)

ii. Hence, show that $\tan\left(\frac{5\pi}{12}\right) = 2 + \sqrt{3}$. (1 mark)

Consider $f: \left[\sqrt{3}, 6 + 3\sqrt{3}\right] \to R, f(x) = \arctan\left(\frac{x}{3}\right) - \frac{\pi}{6}$.

b. Sketch the graph of f on the axes below, labelling the endpoints with their coordinates. (3 marks)

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

