

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Logic & Algorithms II [2.5]

Workbook

Outline:

Logic

- Introduction to LogicConnectives
- Truth Tables
- Equivalence
- Circuit Representation

Pg 02-21

Boolean Algebra

- Introduction to Boolean Algebra
- Logic Gate Representation

Karnaugh Maps

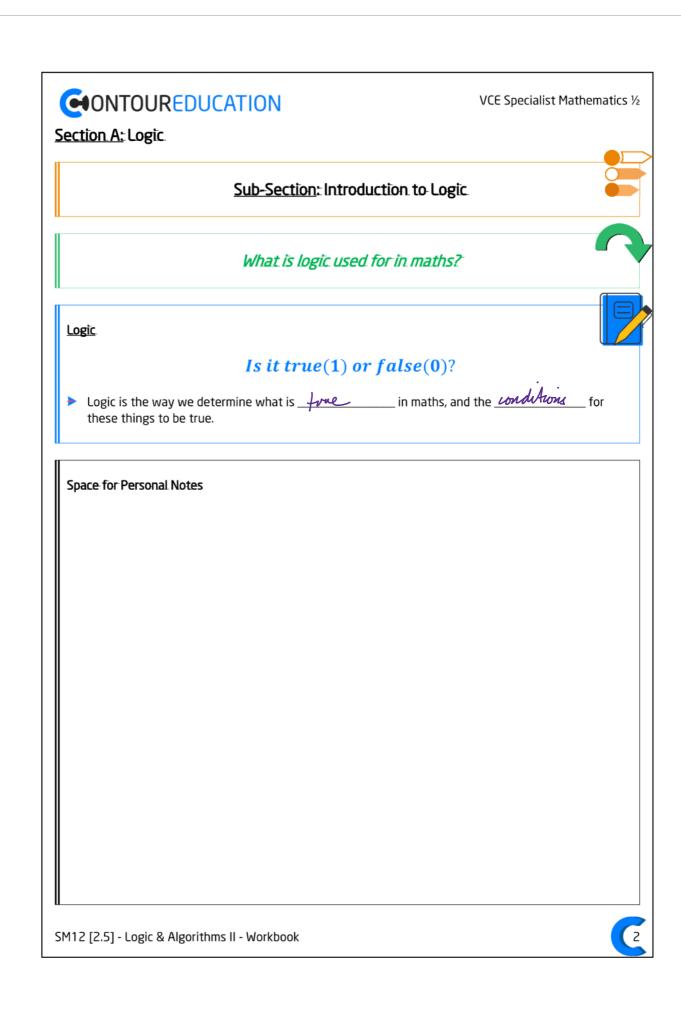
Pg 35-45

Pg 22-34

Learning Objectives:

SM12 [2.5.1] - Understand The basics of logic and propositional statements

- □ SM12 [2.5.2] Construct truth tables and recognise equivalent logical expressions
- □ SM12 [2.5.3] Represent logical expressions using switching circuits and logic gates
- SM12 [2.5.4] Simplify and evaluate Boolean algebra expressions using algebraic identities and Karnaugh maps



Question 1

State if the following statements are true or false.

a. Milk is white.

True

b. Milk is white and water is red.

True and false false

Space for Personal Notes

Sub-Section: Connectives

Active Recall

Logic is a way we determine what is ______ in maths.

How do we connect multiple propositions?

Connectives

$$(P \land Q) = "P \text{ and } Q"$$

$$(P \lor Q) = "P or Q"$$

$$P \rightarrow Q = "if P, then Q"$$

$$P \leftrightarrow Q = "P if and only if Q"$$

The symbols are called <u>connectives</u>, as their name suggests, they help us connect different propositions together.

Space for Personal Notes

Question 2 Walkthrough.

Translate the following into English:

P ="I cheat", R ="I will write an exam", Q ="I will get caught", S ="I will fail".

$$(R \land P) \rightarrow (Q \land S)$$

If I will write an exam AND I cheat, then I will get caught AND I will fail

Space for Personal Notes

SM12 [2.5] - Logic & Algorithms II - Workbook

(5

Question 3

Translate the following into English:

P ="I get 20 RAW in further", R ="I fail English Exam", Q ="Parents are mad", S ="Have no dinner".

$$R \vee P \rightarrow Q \wedge S$$

If I fail an English exam OR I get a 20 raw, then parents are mad AND I will have no dinner

Space for Personal Notes

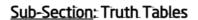
Question 4

Translate into propositional logic using the correct syntax.

If David does not die, then Mary will not get any money and David's family will be happy.

Space for Personal Notes

$$\neg P \longrightarrow \neg Q \land R$$



Is there a way to visualise the logic?

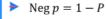
Truth Tables

p	q	<i>p</i> ∧ <i>q</i>
T	T	T
T	F	F
F	T	F
F	F	F

- Is a way to visualise the logic for <u>connectives</u>
- Instead of true or false, we can write ______ and _____ respectively.

Let's consider all cases for truth tables.

Case 1: Negations (\neg, \sim)



p	⊐ p
	0
O	

SM12 [2.5] - Logic & Algorithms II - Workbook

Case 2: Conjunction (^, &)

p	ą	$p \wedge q$
)	1	1
1	0	0
0		\bigcirc
0	0	0

Example: Your mum says that she will buy you a PS5 if you get raw 50 in both Specialist Maths and Maths Methods. We can summarise the situations and outcomes in a diagram comparable to a truth table.

You get raw 50 in MM	You get raw 50 in SM	You get a PS5
Yes	Yes	Yes
Yes	No	Wo
No	Yes	No
No	No	No

Case 3: Disjunction (v,+)

 $p \lor q = \max(p,q)$

p	ą	$p \lor q$
	()
	0	
0	1)
D	0	0

Example: Your mum says that she will give you \$300 if you get raw 50 in either Specialist Maths or Maths Methods. We can summarise the situations and outcomes in a diagram comparable to a truth table.

You get raw 50 in MM	You get raw 50 in SM	You get a \$300
Yes	Yes	Tes
Yes	No	Yes
No	Yes	Yes
No	No	No

<u>Case 4:</u> Conditional (\rightarrow)

<u>p</u>	ą	p o q
	1	1
1	O	Ö
6]	1
\supset	0	

- This can be a bit confusing to wrap our heads around, but consider the following statement:
 - (e) If it is raining, I will wear a raincoat.
- If it is raining, and I am, in fact wearing a raincoat, I am not lying to you.
- If it is NOT raining outside, and I am not wearing a raincoat, I am also not lying to you.
- If it is NOT raining outside, and I am wearing a raincoat, I am also not lying to you.
- If it is raining, and I am, in fact NOT wearing a raincoat, I AM lying to you.
- ightharpoonup p
 ightharpoonup q is only false if p is true and q is false.

$$p \rightarrow q = \begin{cases} 1, if \ p \leq q \\ 0, otherwise \end{cases}$$

Space for Personal Notes

ONTOUREDUCATI	ON
TO THE OUT COUNTY	\mathbf{O}

Case 5: Biconditional $(\stackrel{\checkmark}{\leftrightarrow},\equiv)$ If and only

p	q	$p\leftrightarrow q$
1		1
)	0	0
0	1	D
0	7	(

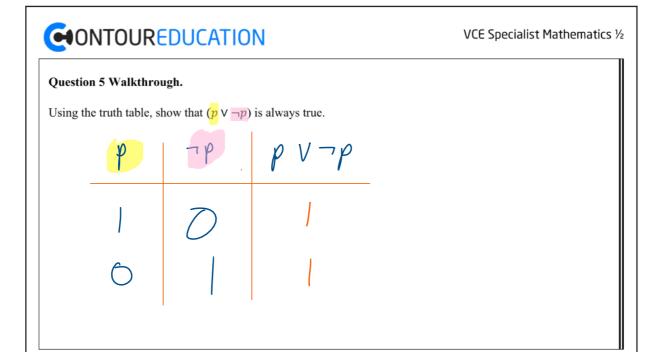
$$p \leftrightarrow q = \begin{cases} 1, if \ p = q \\ 0, otherwise \end{cases}$$

 $\underline{\textbf{Case-6:}} \, \textbf{Exclusive-Or} \, (\underline{\textbf{V}} \, \, \textbf{or} \, \oplus \,)$

p	q	$p \ \underline{\lor} \ q$
	1	0
1	70)
0	1]
0	6	7

➤ The "exclusive or" function is written XOR in some programming languages.

Space for Personal Notes

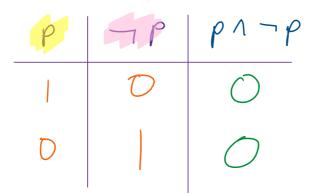


Space for Personal Notes

NOTE: What we have just described above is a <u>fautology</u> a statement that is true by necessity or just by how it is formed logically.

Question 6

Using the truth table, show that $(p \land \neg p)$ is always false.



Space for Personal Notes

NOTE: What we have just described above is a <u>Londradulum</u>, a statement that is false by necessity or just by how it is formed logically.

Sub-Section: Equivalence

Equivalence

 $A \equiv B$

- Definition:
 - **G** Equivalence is when two statements are the same.

Useful Equivalences

- > Equivalence Law:
- Implication Law:
- Double Negation Law:
- Idempotent Laws:

 - $p \lor p \equiv p$
- Commutative Laws:
- Associative Laws:

 - $p \lor (q \lor r) \equiv (p \lor q) \lor r$

- Distributive Laws:
- De Morgan's Laws:
- Identity Laws:
- Inverse Laws:

 - $p \lor (\neg p) \equiv T$

Space for Personal Notes

	€ ON	TOURED	JCAT	ION
--	-------------	--------	-------------	-----

Question 7

Use a truth table for the following questions.

NO

a. Is $(p \land q)$ is logically equivalent to $\neg (p \lor q)$?

NOTE: "Logical equivalence" means that the combination of statements carries the same truth values.

p	2	PNZ	pvg	-(pv2)
1)		1	0
1	O	0)	0
0	1	0	1	0
0	0	0	6	1

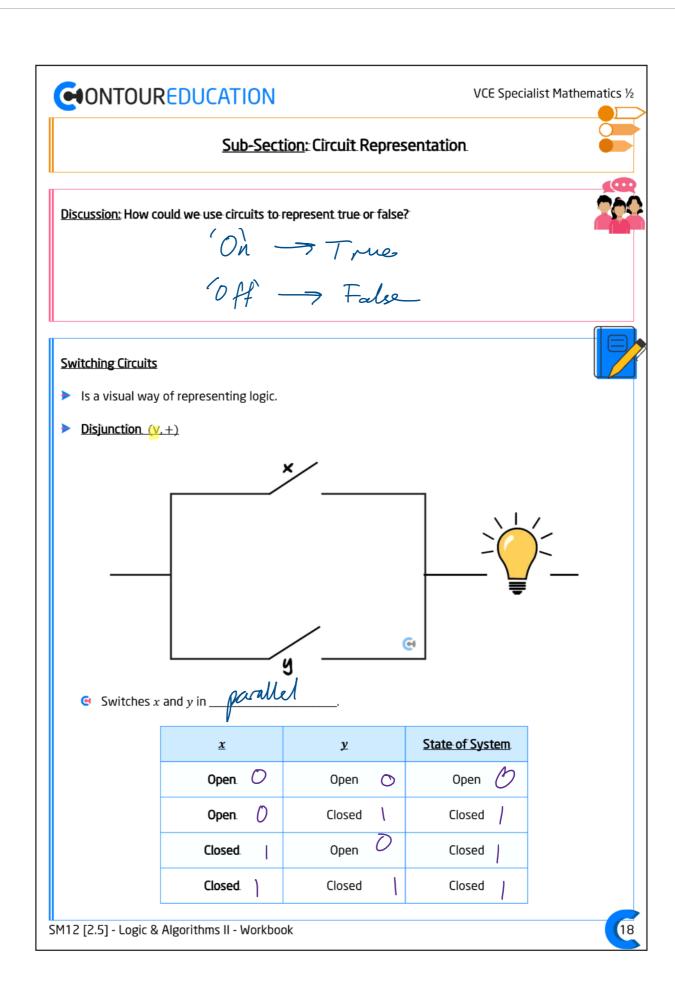
b. Is $\neg (p \land q)$ logically equivalent to $(\neg p \lor \neg q)$?

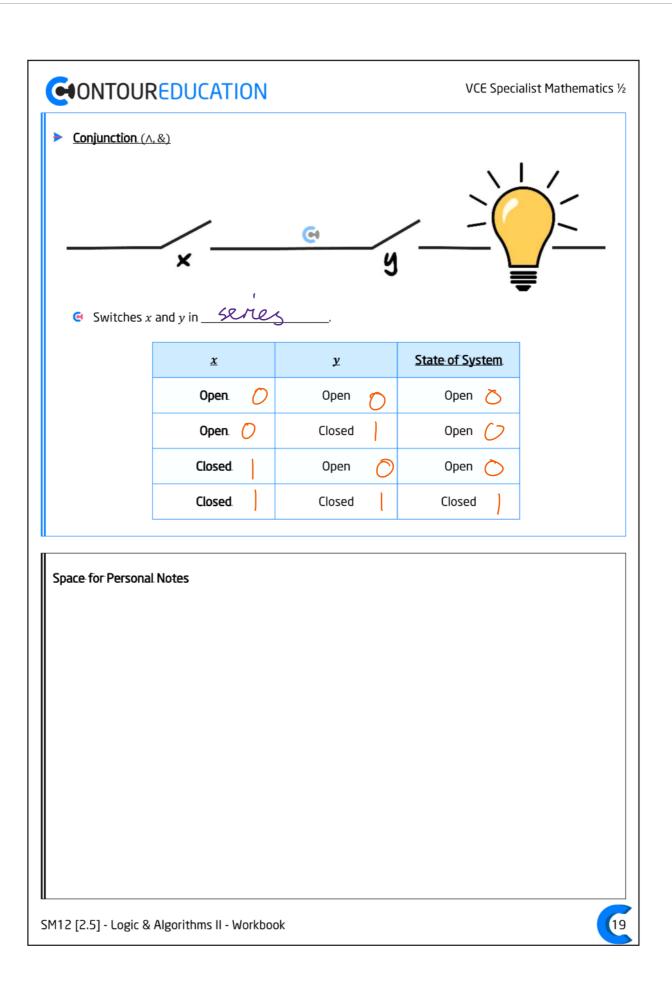
p	2	pne	7(012)	7 p	72	7PV72
1)	1	0	D	0	0
1	O	O	1	0	1	1-
0	/	0		1	0	1
0	0	D				

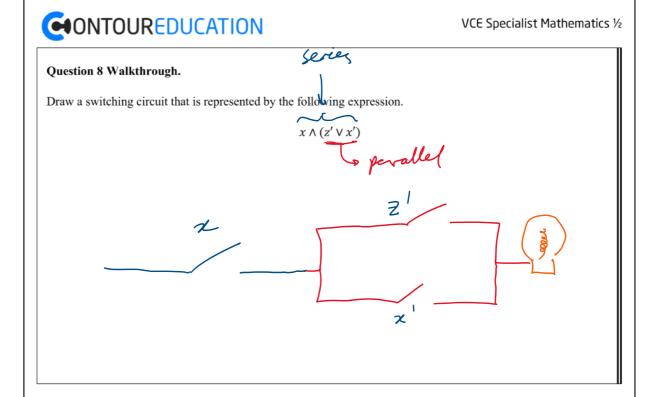
Space for Personal Notes

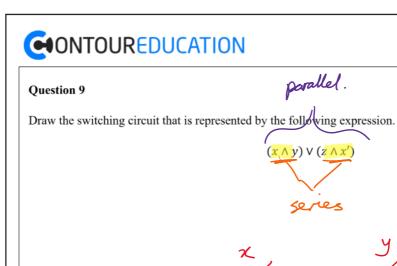
Logical equivalence

SM12 [2.5] - Logic & Algorithms II - Workbook









Space for Personal Notes

SM12 [2.5] - Logic & Algorithms II - Workbook

VCE Specialist Mathematics $\frac{1}{2}$

Section B: Boolean Algebra

Sub-Section: Introduction to Boolean Algebra

What is Boolean Algebra?

Boolean Algebra

$$1 = True$$

0 = False
Algebra of trues and falses (1; and 05)
The set of rules used to simplify logical expressions without changing their functionality

T = 0	\overline{x}	not	$\neg P$
zvy	x + y	or	$P \lor Q$
nly	ху	and	$P \wedge Q$
	$x \to y/\overline{x} + y$	implication	$P \rightarrow Q$
	$x \equiv y$	equivalence	$P \longleftrightarrow Q$

Space for Personal Notes

Context: George Boole

English mathematician George Boole came up with Boolean Algebra.

George Boole (1815-1864)

▶ His goal was to find a set of mathematical axioms that could reproduce the classical results of logic.

Space for Personal Notes

Question 10

Evaluate the following using Boolean algebra.

a. 1+0 = 1

b. 1+1 =

Space for Personal Notes

NOTE: 1 and 0 represent true and false respectively.

Let's summarise!

Fundamental Laws and Theorems of Boolean Algebra

- $\overline{1} = 0$
- ightharpoonup $\overline{0} = 1$
- And, just like how we had the useful laws for equivalences involving connectives, we have the following _______:
 - 1. X + 0 = X
 - **2.** X + 1 = 1
 - **3.** X + X = X
 - **4.** $X + \bar{X} = 1$
 - **5.** $X \cdot 0 = 0$
 - **6.** $X \cdot 1 = X$
 - **7.** $X \cdot X = X$
 - $\mathbf{8} \cdot X \cdot \overline{X} = 0$
 - $\mathbf{9.} \ \ \bar{\bar{X}} = X$
 - **10.** X + Y = Y + X
 - 11.XY = YX
 - 12.(X + Y) + Z = X + (Y + Z)
 - $13.(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
 - $\mathbf{14.}X(Y+Z) = XY + XZ$
 - $15.X + Y \cdot Z = (X + Y) \cdot (X + Z)$
 - $\mathbf{16}.\overline{X+Y}=\bar{X}\cdot\bar{Y}$
 - $\mathbf{17.}\overline{X\cdot Y} = \overline{X} + \overline{Y}$

SM12 [2.5] - Logic & Algorithms II - Workbook

Question 11 Walkthrough.

Simplify the following Boolean expression, stating which of the laws and/or theorems of Boolean Algebra you used in your working.

$$\begin{array}{c} (x+y)(x+\bar{y})(\bar{x}+z) \\ \\ x,x+x = x \\ \\ x+x = x \\ \\ x+x=x \\ x+x=x \\ x+x=x \\ x+x=x \\ x+x=x \\ \\ x+x=x$$

Space for Personal Notes

Ouestion 12

Simplify the following Boolean expressions, stating which of the laws and/or theorems of Boolean Algebra you used in your working.

a.
$$X = ABC + \overline{A}B + AB\overline{C}$$

$$X = ABC + ABC + \overline{AB}$$

$$= AB(C+C) + \overline{AB}$$

$$= AB + \overline{AB}$$

$$= (A+\overline{A})B$$

$$= B$$

b.
$$XYZ + X\bar{Y}Z + XY\bar{Z}$$

$$= \times Z \left(\frac{1}{1} + \frac{1}{2} \right) + \times Y \overline{Z}$$

$$= \times Z + \times Y \overline{Z}$$

$$= \times (Z + Y \overline{Z})$$

$$= \times (Z + Y) (Z + \overline{Z})$$

$$= \times (Z + Y)$$

Sub-Section: Logic Gate Representation

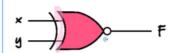
Logic Gate

- Boolean algebra is generally used in the creation and simplification of electronic circuits.

logical operations

Name-	Graphic Symbol	Algebraic Function	Truth Table
AND X ^ Y	* F	F = xy	x y F 0 0 0 0 1 0 1 0 0 1 1 1
OR 7L V Y	x F	F = x + y	x y F 0 0 0 0 1 1 1 0 1 1 1 1
Inverter	× 1 F	F = x'	x F 0 1 1 0
Buffer	× 1 0 F	F = x	x F 0 0 1 1
Exclusive-OR(XOR)	* F	$F = xy' + x'y$ $= x \oplus y$	x y F 0 0 0 0 1 1 1 0 1 1 1 0

Exclusive-NOR or equivalence



$$F = xy + x'y'$$
$$= (x \oplus y)'$$

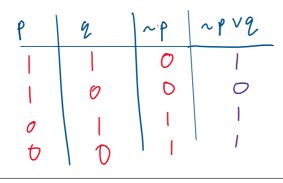
x	y	F
0	0	1
0	1	0
1	0	0
1	1	1

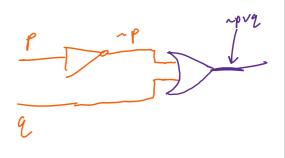
Space for Personal Notes

Question 13 Walkthrough.

Use logic gates to represent the following expressions and draw the corresponding truth tables:

 $\sim p \vee q$





Space for Personal Notes

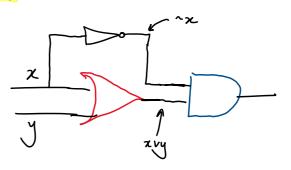
SM12 [2.5] - Logic & Algorithms II - Workbook

Question 14

Use logic gates to represent the following expressions and draw the corresponding truth tables:

 $(x \lor y) \land \sim x$

×	لا	xvy	^2	(xvy)1~x
1	- 1		0	0
Ì	0	1	0	b
	1		1	1
p	b	6	1	0

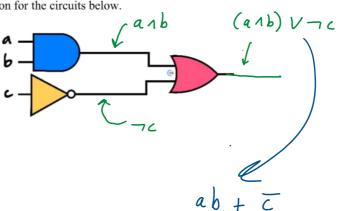


Space for Personal Notes

SM12 [2.5] - Logic & Algorithms II - Workbook

Question 15 Walkthrough.

Write down the Boolean expression for the circuits below.



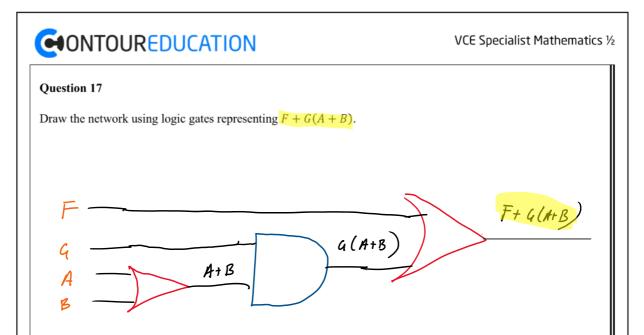
Space for Personal Notes

SM12 [2.5] - Logic & Algorithms II - Workbook

Question 16

Space for Personal Notes

SM12 [2.5] - Logic & Algorithms II - Workbook



Space for Personal Notes

Section C: Karnaugh Maps

Creating Karnaugh Maps (K-Maps)

- Let's look at how to use a K-Map using an example.
- Consider the following Boolean expression and the associated truth table:

$$F = A + B (i)$$

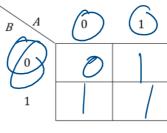
OR

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

The corresponding K-Map is constructed by the following conventions:

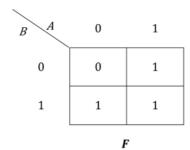
 \blacksquare The possible values of B are written as <u>row</u> <u>levels</u> along the LHS.

Karnaugh Map



The uput values will act as coordinates for the output

• Once the K-Map is filled in it will look like this:



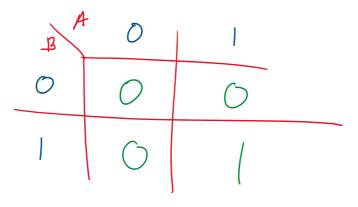
$$F = A + B$$

Space for Personal Notes

SM12 [2.5] - Logic & Algorithms II - Workbook

Question 18 Walkthrough.

Create Karnaugh Maps for the AND function.

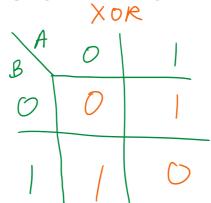


Space for Personal Notes

SM12 [2.5] - Logic & Algorithms II - Workbook

Question 19

Create Karnaugh Maps for the XOR, and Equivalence functions.



Equivalence

B
O
I
O
I
O

Space for Personal Notes

SM12 [2.5] - Logic & Algorithms II - Workbook

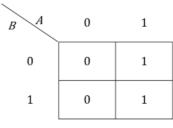
Okay... what is it useful for?

Deriving Expressions from a Karnaugh Map

- A K-Map can be used to derive the simplest possible Boolean expression.
- Consider the following (different) truth table and the corresponding K-Map:

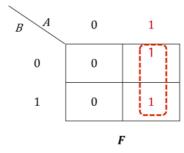
A	В	F
0	0	0
0	1	0
1	0	1
1	1	1

Karnaugh Map



F

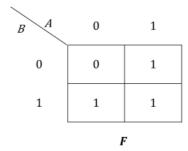
- To derive the simplish possible boolean expension the K-Map, we are looking for the largest possible groupings of
- In our K-Map, the largest possible grouping of ones is as follows:



SM12 [2.5] - Logic & Algorithms II - Workbook

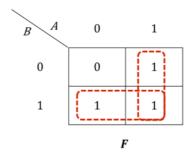
- Here, we can see that:
 - Whenever there is a 1 in the group, the value of input A is 1.
 - \bullet The topmost 1 corresponds to a value of 0 for input B.
 - \bullet But, the bottom 1 corresponds to the value of 1 for input B.
- As such, the output is <u>independent</u> of the input *B*, which makes *B* a <u>redundant</u> input.
- As such, F = A
- Consider this third truth table and the corresponding K-Map:

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1



Rule: A single group of 1s CANNOT be "L-Shaped".

As such, here we have two grouping of 1s.



- The 1s in the vertical group always occur with input A = I, therefore they can be matched to the expression A.
- The 1s in the horizontal group always occur with input 8-1, therefore they can be matched to the expression B.
- As such, F = AVB

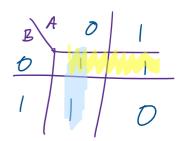
Space for Personal Notes

SM12 [2.5] - Logic & Algorithms II - Workbook

Question 20

Construct a K-Map corresponding to the following truth table and hence determine a Boolean Expression for F in terms of A and B.

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

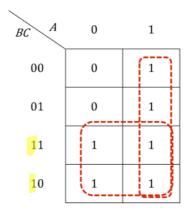


Space for Personal Notes

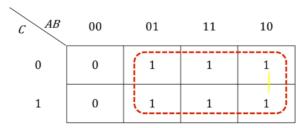
Karnaugh Maps With 3 Variables

- When there are 3 variables, it is often best practice to:
 - e place one variable and its possibles values as column headings, and
 - the possible <u>combinations</u> of values for the remaining variables as row levels.

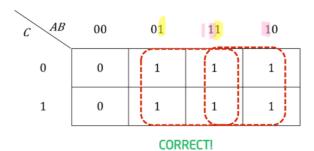
A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1



When we construct our groups, we find that the Boolean expression for F is F = AVB



WRONG!

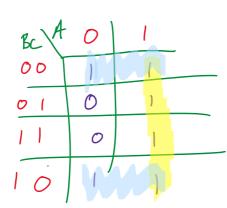


Space for Personal Notes

Question 21

Construct a K-Map corresponding to the following truth table and hence determine a Boolean Expression for F in terms of A, B, and C.

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1



Space for Personal Notes

Contour Checklist

 <u>Learning Objective</u>: [2.5.1] – Understand the Basics of Logic and Propositional Statements

Key Takeaways

Connectives

- The symbols are called connectives, as their name suggests, they help us connect different propositions together.
 - <u>Learning Objective</u>: [2.5.2] Construct Truth Tables and Recognise
 Equivalent Logical Expressions

Key Takeaways

- Case 1: Negations (¬, ~)
 - $O \operatorname{Neg} p = 1 P$

<u>p</u>	⊐ p <u></u>
1	\mathcal{O}

- ☐ Case 2: Conjunction (∧, &)

p	đ	$p \wedge q$
1	1	
1	0	0
0	1	0
0	0	D

- ☐ Case 3: Disjunction (∨, +)

p	a	$p \lor q$
1	1	_
1	0	
0	1	
0	0	0

Case 4: Conditional (→)

p	ą	p o q
1	1	1
1	0	0
0	1	1
0	0	1

 \bigcirc $p \rightarrow q$ is only false if p is true and q is false.

$$p \rightarrow q = \begin{cases} 1, if \ p \leq q \\ 0, otherwise \end{cases}$$

□ Case 5: Biconditional $(\leftrightarrow, \equiv)$

p	ą	$p\leftrightarrow q$
1	1	
1	0	0
0	1	0
0	0	l

$$p \leftrightarrow q = \begin{cases} 1, if \ p = q \\ 0, otherwise \end{cases}$$

Case 6: Exclusive-Or (V or ⊕)

p	q	<u>p ⊻ q</u>
1	1	0
1	0	1
0	1	1
0	0	D

- The "exclusive or" function is written XOR in some programming languages.
- Equivalence

$$A \equiv B$$

- Definition:
 - Equivalence is when two statements are the same.
- Useful Equivalences
 - Equivalence Law

Implication Law

O Double Negation Law

$$\neg \neg p \equiv \underline{\hspace{1cm}}$$

Idempotent Laws

Commutative Laws

Associative Laws

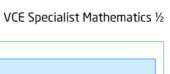
Distributive Laws

O De Morgan's Laws

Identity Laws

$$\begin{array}{ccc}
 & p \land T \equiv & p \\
 & p \lor F \equiv & p
\end{array}$$

Inverse Laws

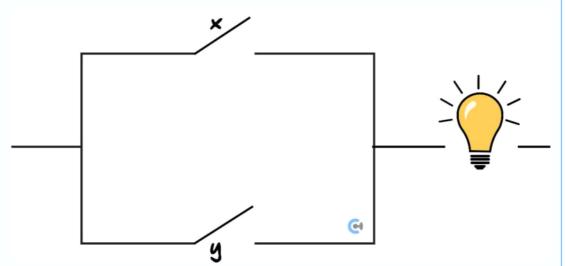


<u>Learning Objective</u>: [2.5.3] – Represent Logical Expressions Using Switching Circuits and Logic Gates

Key Takeaways

- Switching Circuits
 - Is a visual way of representing logic.
 - O Disjunction (V,+)

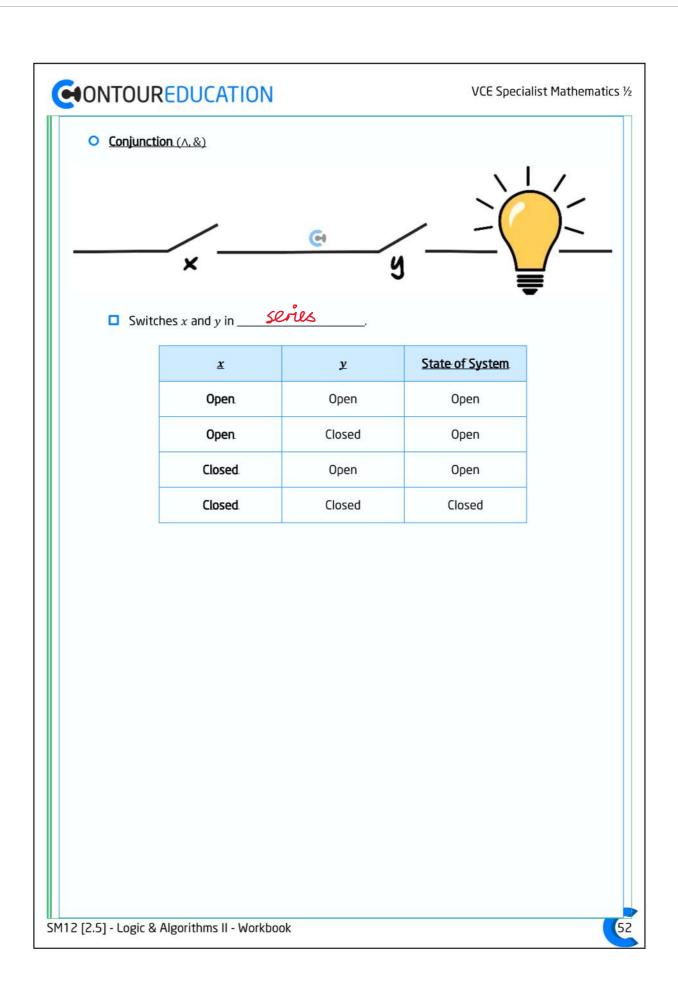
CONTOUREDUCATION



<u>x</u>	¥	State of System
Open.	Open	Open
Open.	Closed	Closed
Closed	Open	Closed
Closed	Closed	Closed

SM12 [2.5] - Logic & Algorithms II - Workbook

(5



- Logic Gate
 - O Boolean algebra is generally used in the creation and simplification of electronic circuits.
 - We design models for these electronic circuits by making each of our <u>logical operations</u> a type of gate: a <u>logic</u> gates.

Name	Graphic Symbol	Algebraic Function	Truth Table
AND-	y F	F = xy	x y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	* F	F = x + y	x y F 0 0 0 0 1 1 1 0 1 1 1 1
Inverter	x	F = x'	x F 0 1 1 0
Buffer-	x	F = x	x F 0 0 1 1
Exclusive-OR(XOR)	* F	$F = xy' + x'y$ $= x \oplus y$	x y F 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive-NOR or equivalence	* f	$F = xy + x'y'$ $= (x \oplus y)'$	x y F 0 0 1 0 1 0 1 0 0 1 1 1

<u>Learning Objective</u>: [2.5.4] – Simplify and Evaluate Boolean Algebra Expressions Using Algebraic Identities and Karnaugh Maps

Key Takeaways

☐ Fundamental Laws and Theorems of Boolean Algebra

$$\overline{1} = 0$$

$$\overline{\mathbf{0}} = \mathbf{1}$$

• And, just like how we had the useful laws for equivalences involving connectives, we have the following <u>Fundamental Laws and Theorems of Boolean Algebra</u>

1.
$$X + 0 = X$$

2.
$$X + 1 = 1$$

3.
$$X + X = X$$

4.
$$X + \bar{X} = 1$$

5.
$$X \cdot 0 = 0$$

6.
$$X \cdot 1 = X$$

7.
$$X \cdot X = X$$

$$\mathbf{8.} \ \ X \cdot \bar{X} = 0$$

9.
$$\bar{\bar{X}} = X$$

$$10 \cdot X + Y = Y + X$$

11.
$$XY = YX$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

$$13 \cdot (X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

$$\mathbf{14.}X(Y+Z) = XY + XZ$$

$$\mathbf{15} \cdot X + Y \cdot Z = (X + Y) \cdot (X + Z)$$

SM12 [2.5] - Logic & Algorithms II - Workbook

CONTOUREDUCATION

$$\mathbf{16}.\overline{X+Y}=\overline{X}\cdot\overline{Y}$$

$$\mathbf{17.}\overline{X\cdot Y} = \overline{X} + \overline{Y}$$

- Creating Karnaugh Maps (K-Maps)
 - O To create a Karnaugh map:
 - Draw a grid, with one square for each row in the truth table.
 - The possible values of *A* are written as <u>column heading</u> on the top.
 - \square The possible values of B are written as <u>row levels</u> along the *LHS*.
 - O To derive the simplish possible Boolean expression from the K-Map, we are looking for the largest possible groupings of ones.
 - When there are 3 variables, it is often best practice to:
 - place one variable and its <u>possible values</u> as column headings, and
 - the possible <u>combinations</u> of values for the remaining variables as row levels.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **> When Are They?** 30 —minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

