CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Logic & Algorithms II [2.5]

Workbook

Outline:

Logic

Introduction to Logic

Connectives

Truth Tables

Equivalence

Circuit Representation

Pg 02-21

Boolean Algebra

Introduction to Boolean Algebra

Logic Gate Representation

Karnaugh Maps

Pg 22-34

Pg 22-34

Pg 22-34

Learning Objectives:

SM12 [2.5.1] - Understand The basics of logic and propositional statements
 SM12 [2.5.2] - Construct truth tables and recognise equivalent logical expressions
 SM12 [2.5.3] - Represent logical expressions using switching circuits and logic gates
 SM12 [2.5.4] - Simplify and evaluate Boolean algebra expressions using algebraic identities and Karnaugh maps

Section A: Logic

Sub-Section: Introduction to Logic

What is logic used for in maths?

Logic

Is it true(1) or false(0)?

Logic is the way we determine what is _____ in maths, and the _____ for these things to be true.

O	1
Question	1

State if the following statements are true or false.

- **a.** Milk is white.
- **b.** Milk is white and water is red.

Sub-Section: Connectives

Active Recall

Logic is a way we determine what is ______ in maths.

How do we connect multiple propositions?

Connectives

$$(P \land Q) = "P \ and \ Q"$$
 $(P \lor Q) = "P \ or \ Q"$
 $P \to Q = "if \ P, then \ Q"$
 $P \leftrightarrow Q = "P \ if \ and \ only \ if \ Q"$

The symbols are called ______, as their name suggests, they help us connect different propositions together.

Question 2 Walkthrough.

Translate the following into English:

P = "I cheat", R = "I will write an exam", Q = "I will get caught", S = "I will fail".

$$R \wedge P \rightarrow Q \wedge S$$

Space	for	Personal	Notes

Question 3

Translate the following into English:

P = "I get 20 RAW in further", R = "I fail English Exam", Q = "Parents are mad", S = "Have no dinner".

$$R \vee P \rightarrow Q \wedge S$$

Space for	Personal	Notes
-----------	----------	-------

Question 4	ļ
-------------------	---

Translate into propositional logic using the correct syntax.

If David does not die, then Mary will not get any money and David's family will be happy.

Sub-Section: Truth Tables

Is there a way to visualise the logic?

3

Truth Tables

р	q	p ∧ q
T	T	T
T	F	F
F	T	F
F	F	F

- Is a way to visualise the logic for ______.
- Instead of true or false, we can write _____ and ____ respectively.

Let's consider all cases for truth tables.

$\underline{\text{Case 1:}} \ \text{Negations} \ (\neg, \sim)$

<u>p</u>	<u>⊐p</u>

Case 2: Conjunction (A, &)

 $\rightarrow p \land q = \min(p,q)$

p	ą	<u>p</u> ∧ q

Example: Your mum says that she will buy you a PS5 if you get raw 50 in both Specialist Maths **and** Maths Methods. We can summarise the situations and outcomes in a diagram comparable to a truth table.

You get raw 50 in MM	You get raw 50 in SM	You get a PS5

Case 3: Disjunction (V, +)

 $\rightarrow p \lor q = \max(p,q)$

<u>p</u>	ą	<u>p ∨ q</u>

Example: Your mum says that she will give you \$300 if you get raw 50 in either Specialist Maths **or** Maths Methods. We can summarise the situations and outcomes in a diagram comparable to a truth table.

You get raw 50 in MM	You get raw 50 in SM	You get a \$300

Case 4: Conditional (\rightarrow)

<u>p</u>	ā	p o q

- This can be a bit confusing to wrap our heads around, but consider the following statement:
 - If it is raining, I will wear a raincoat.
- If it is raining, and I am, in fact wearing a raincoat, I am not lying to you.
- If it is NOT raining outside, and I am not wearing a raincoat, I am also not lying to you.
- If it is NOT raining outside, and I am wearing a raincoat, I am also not lying to you.
- If it is raining, and I am, in fact NOT wearing a raincoat, I AM lying to you.
- $p \rightarrow q$ is only false if p is true and q is false.

$$p \rightarrow q = \begin{cases} 1, if \ p \leq q \\ 0, otherwise \end{cases}$$

<u>p</u>	<u>a</u>	$p\leftrightarrow q$

$$p \leftrightarrow q = \begin{cases} 1, if \ p = q \\ 0, otherwise \end{cases}$$

Case 6: Exclusive-Or ($V \circ G \oplus G$)

<u>p</u>	q	<u>p ⊻ q</u>

➤ The "exclusive or" function is written XOR in some programming languages.

Onection	5	Walkthrough.
Question	3	waikuirougii.

Using the truth table, show that $(p \lor \neg p)$ is always true.

Space for Personal Notes

NOTE: What we have just described above is a ______, a statement that is true by necessity or just by how it is formed logically.

Λ	estion	
	IPCHIAN	n

Using the truth table, show that $(p \land \neg p)$ is always false.

Space for Personal Notes

NOTE: What we have just described above is a _______, a statement that is false by necessity or just by how it is formed logically.

Sub-Section: Equivalence

 $A \equiv B$

Equivalence

• Equivalence is when two statements are the same.

<u>Useful Equivalences</u>

Equivalence Law:

> Implication Law:

Double Negation Law:

Idempotent Laws:

Commutative Laws:

$$extbf{q} p \lor q \equiv q \lor p$$

Associative Laws:

$$p \land (q \land r) \equiv (p \land q) \land r$$

CONTOUREDUCATION

Distributive Laws:

De Morgan's Laws:

Identity Laws:

$$extit{} p \wedge T \equiv p$$

Inverse Laws:

Question 7

Use a truth table for the following questions.

a. Is $(p \land q)$ is logically equivalent to $\neg (p \lor q)$?

NOTE: "Logical equivalence" means that the combination of statements carries the same truth values.

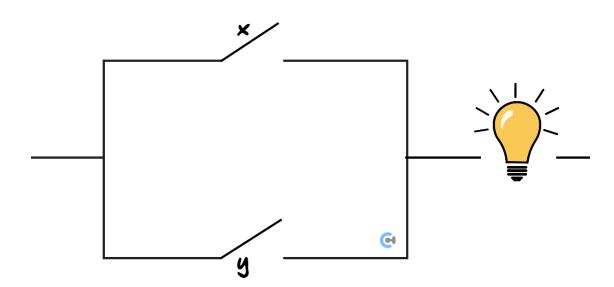
b. Is $\neg (p \land q)$ logically equivalent to $(\neg p \lor \neg q)$?

Sub-Section: Circuit Representation

<u>Discussion:</u> How could we use circuits to represent true or false?

Switching Circuits

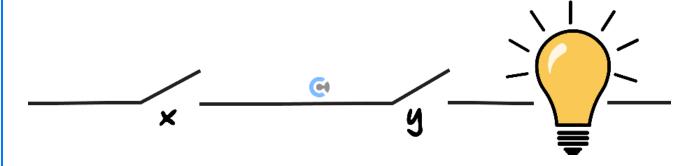
- Is a visual way of representing logic.
- Disjunction (V,+)



Switches x and y in ______

<u>x</u>	¥	State of System
Open	Open	Open
Open	Closed	Closed
Closed	Open	Closed
Closed	Closed	Closed

Conjunction (∧, &)



Switches *x* and *y* in ______.

<u>x</u>	¥	State of System
Open	Open	Open
Open	Closed	Open
Closed	Open	Open
Closed	Closed	Closed

Ougstion	Q	Wallsthrough
Question	o	Walkthrough.

Draw a switching circuit that is represented by the following expression.

$$x \wedge (z' \vee x')$$

Space	for	Personal	Notes
-------	-----	----------	-------

O	nestion	9

Draw the switching circuit that is represented by the following expression.

$$(x \wedge y) \vee (z \wedge x')$$

Section B: Boolean Algebra

Sub-Section: Introduction to Boolean Algebra

What is Boolean Algebra?

Boolean Algebra

1 = True

0 = False

- Algebra of ______.
- ➤ The set of rules used to simplify ______ without changing their _____

\overline{x}	not	$\neg P$
x + y	or	$P \lor Q$
xy	and	$P \wedge Q$
$x \to y/\overline{x} + y$	implication	$P \rightarrow Q$
$x \equiv y$	equivalence	$P \longleftrightarrow Q$

Space for	r Personal	Notes
-----------	------------	-------

Context: George Boole

English mathematician George Boole came up with Boolean Algebra.

George Boole (1815-1864)

His goal was to find a set of mathematical axioms that could reproduce the classical results of logic.

Question 10

Evaluate the following using Boolean algebra.

- **a.** 1+0
- **b.** 1+1

Space for Personal Notes

NOTE: 1 and 0 represent true and false respectively.

Let's summarise!

Fundamental Laws and Theorems of Boolean Algebra

- $\overline{1} = 0$
- $\overline{\mathbf{0}} = \mathbf{1}$
- And, just like how we had the useful laws for equivalences involving connectives, we have the following _____:
 - 1. X + 0 = X
 - **2.** X + 1 = 1
 - **3.** X + X = X
 - **4.** $X + \bar{X} = 1$
 - **5.** $X \cdot 0 = 0$
 - **6.** $X \cdot 1 = X$
 - 7. $X \cdot X = X$
 - $8. \ \ X \cdot \bar{X} = 0$
 - 9. $\bar{\bar{X}} = X$
 - **10.** X + Y = Y + X
 - **11.** XY = YX
 - **12.** (X + Y) + Z = X + (Y + Z)
 - **13.** $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
 - **14.** X(Y + Z) = XY + XZ
 - **15.** $X + Y \cdot Z = (X + Y) \cdot (X + Z)$
 - **16.** $\overline{X+Y} = \overline{X} \cdot \overline{Y}$
 - **17.** $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

Question	11	Walkthroug	σh
Question	11	vv aikuii uug	ıı.

Simplify the following Boolean expression, stating which of the laws and/or theorems of Boolean Algebra you used in your working.

$$(X+Y)(X+\overline{Y})(\overline{X}+Z)$$

Question 12

Simplify the following Boolean expressions, stating which of the laws and/or theorems of Boolean Algebra you used in your working.

a. $X = A B C + \overline{A} B + A B \overline{C}$

b. $XYZ + X\bar{Y}Z + XY\bar{Z}$

Sub-Section: Logic Gate Representation

Logic Gate

- Boolean algebra is generally used in the creation and simplification of electronic circuits.

Name	Graphic Symbol	Algebraic Function	Truth Table
AND	y ®	F = xy	x y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	× F	F = x + y	x y F 0 0 0 0 1 1 1 0 1 1 1 1
Inverter	xF	F = x'	x F 0 1 1 0
Buffer	x	F = x	x F 0 0 1 1
Exclusive-OR(XOR)	* F	$F = xy' + x'y$ $= x \oplus y$	x y F 0 0 0 0 1 1 1 0 1 1 1 0

Exclusive-NOR or equivalence



$$F = xy + x'y'$$
$$= (x \oplus y)'$$

x	у	F
0	0	1
0	1	0
1	0	0
1	1	1

Space for Personal Notes			

Question	13	Walkthr	angh
Question	13	vv aikuii	ougn.

Use logic gates to represent the following expressions and draw the corresponding truth tables:

 $\sim p \vee q$

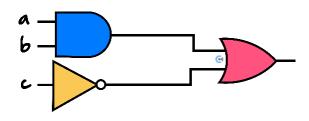
Question	1	1
()iiestion	•	4

Use logic gates to represent the following expressions and draw the corresponding truth tables:

$$(x \lor y) \land \sim x$$

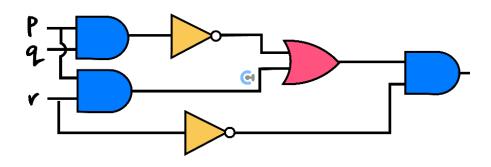
Question 15 Walkthrough.

Write down the Boolean expression for the circuits below.



Question 16

Write down the Boolean expression for the circuits below.



Section C: Karnaugh Maps

Creating Karnaugh Maps (K-Maps)

- Let's look at how to use a K-Map using an example.
- Consider the following Boolean expression and the associated truth table:

$$F = A + B$$
 (i)

OR

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

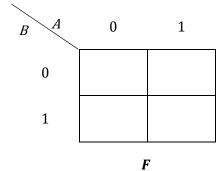
The corresponding K-Map is constructed by the following conventions:

• Draw a grid, with _____ in the truth table.

lacktriangledown The possible values of A are written as ______ on the top.

• The possible values of *B* are written as ______ along the LHS.

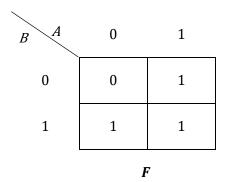
Karnaugh Map



G The ______ values will act as ______ for the _____ values.

CONTOUREDUCATION

• Once the K-Map is filled in it will look like this:



Question 18 Walkthrough.	
Create Karnaugh Maps for the AND function.	

Question 19		
Create Karnaugh Maps for the XOR, and Equivalence functions.		
Space for Personal Notes		

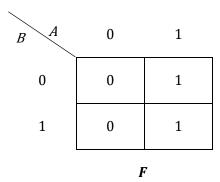
Okay... what is it useful for?

Deriving Expressions from a Karnaugh Map

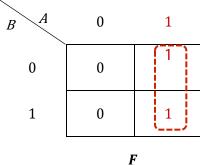
- A K-Map can be used to derive the simplest possible Boolean expression.
- Consider the following (different) truth table and the corresponding K-Map:

A	В	F
0	0	0
0	1	0
1	0	1
1	1	1

Karnaugh Map



- To derive the _____ from the K-Map, we are looking for
- In our K-Map, the largest possible grouping of ones is as follows:

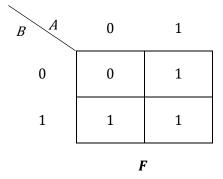


CONTOUREDUCATION

>	Here,	MΘ	can	566	that:
	ווכוכ,	$vv \subset$	carr	255	unat.

- Whenever there is a 1 in the group, the value of input A is 1.
- \bullet The topmost 1 corresponds to a value of 0 for input B.
- \bullet But, the bottom 1 corresponds to the value of 1 for input B.
- As such, the output is ______of the input *B*, which makes *B* a ______input.
- As such, _____
- Consider this third truth table and the corresponding K-Map:

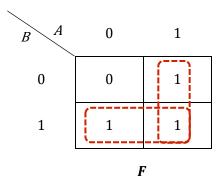
A	В	F
0	0	0
0	1	1
1	0	1
1	1	1



• Rule: A single group of 1s CANNOT be "L-Shaped".

CONTOUREDUCATION

As such, here we have two grouping of 1s.



- The $1_{\rm S}$ in the vertical group always occur with input ______, therefore they can be matched to the expression A.
- The 1_S in the horizontal group always occur with input ______, therefore they can be matched to the expression B.
- As such, _____

Question 20

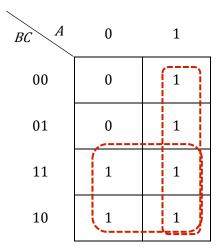
Construct a K-Map corresponding to the following truth table and hence determine a Boolean Expression for F in terms of A and B.

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

Karnaugh Maps With 3 Variables

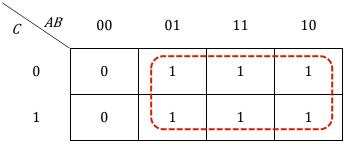
- When there are 3 variables, it is often best practice to:
 - place one variable and its ______ as column headings, and
 - the possible _____ of values for the remaining variables as row levels.

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

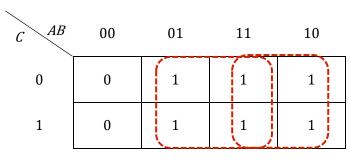


CONTOUREDUCATION

 \blacktriangleright When we construct our groups, we find that the Boolean expression for F is $F = \underline{\hspace{1cm}}$



WRONG!



CORRECT!

Question 21

Construct a K-Map corresponding to the following truth table and hence determine a Boolean Expression for F in terms of A, B, and C.

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Contour Checklist

 <u>Learning Objective</u>: [2.5.1] - Understand the Basics of Logic and Propositional Statements

Key Takeaways

Connectives

$$(P \land Q) =$$
"_____"

$$(P \lor Q) = "$$
_____"

$$P \rightarrow Q =$$
 "_____"

- The symbols are called connectives, as their name suggests, they help us connect different propositions together.
 - Learning Objective: [2.5.2] Construct Truth Tables and Recognise Equivalent Logical Expressions

Key Takeaways

- \square Case 1: Negations (\neg, \sim)
 - O Neg p = 1 P

<u>p</u>	<u>⊐p</u>
1	

- ☐ Case 2: Conjunction (∧, &)

p	q	<u>p ∧ q</u>
1	1	
1	0	
0	1	
0	0	

- ☐ Case 3: Disjunction (∨, +)

<u>p</u>	ą	<u>p ∨ q</u>
1	1	
1	0	
0	1	
0	0	

 \square Case 4: Conditional (\rightarrow)

<u>p</u>	ą	p o q
1	1	
1	0	
0	1	
0	0	

 \bigcirc $p \rightarrow q$ is only false if p is true and q is false.

$$p \rightarrow q = \begin{cases} 1, if \ p \leq q \\ 0, otherwise \end{cases}$$

□ Case 5: Biconditional $(\leftrightarrow, \equiv)$

<u>p</u>	q	$p\leftrightarrow q$
1	1	
1	0	
0	1	
0	0	

$$p \leftrightarrow q = \begin{cases} 1, if \ p = q \\ 0, otherwise \end{cases}$$

 \square Case 6: Exclusive-Or (\bigvee or \bigoplus)

p	q	<u>p ⊻ q</u>
1	1	
1	0	
0	1	
0	0	

- The "exclusive or" function is written XOR in some programming languages.
- Equivalence

$$A \equiv B$$

- O Definition:
 - ☐ Equivalence is when two statements are the same.
- Useful Equivalences
 - Equivalence Law

Implication Law

$$p \rightarrow q \equiv \underline{\hspace{1cm}}$$

O Double Negation Law

Idempotent Laws

$$p \lor p \equiv$$

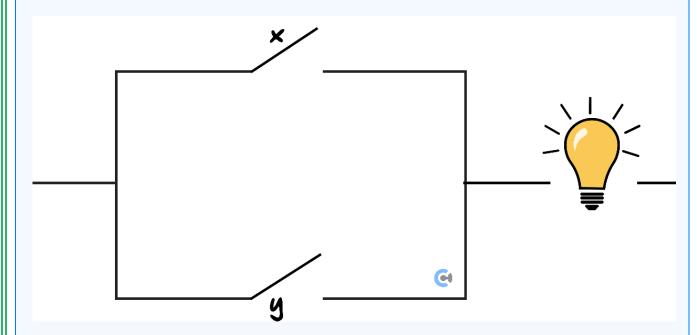
- Commutative Laws
 - $p \land q \equiv \underline{\hspace{1cm}}$
 - $p \lor q \equiv \underline{\hspace{1cm}}$
- Associative Laws

 - \square $p \lor (q \lor r) \equiv \underline{\hspace{1cm}}$
- Distributive Laws
 - \square $p \land (q \lor r) \equiv \underline{\hspace{1cm}}$
- De Morgan's Laws
 - $\neg (p \land q) \equiv \underline{\hspace{1cm}}$
 - $\neg (p \lor q) \equiv \underline{\hspace{1cm}}$
- Identity Laws
 - \square $p \wedge T \equiv \underline{\hspace{1cm}}$
 - \square $p \lor F \equiv \underline{\hspace{1cm}}$
- Inverse Laws
 - $p \land (\neg p) \equiv \underline{\hspace{1cm}}$

□ <u>Learning Objective</u>: [2.5.3] – Represent Logical Expressions Using Switching Circuits and Logic Gates

Key Takeaways

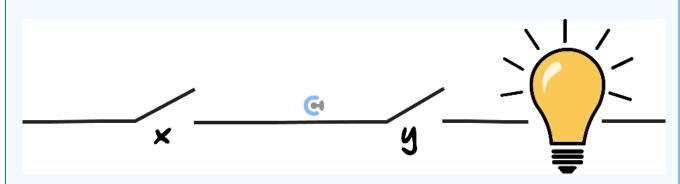
- Switching Circuits
 - Is a visual way of representing logic.
 - O Disjunction (V, +)



Switches *x* and *y* in ______

<u>x</u>	<u>y</u>	State of System
Open	Open	Open
Open	Closed	Closed
Closed	Open	Closed
Closed	Closed	Closed

○ Conjunction (∧, &)



Switches x and y in _____

<u>x</u>	¥	State of System
Open	Open	Open
Open	Closed	Open
Closed	Open	Open
Closed	Closed	Closed

Logic Gate

- O Boolean algebra is generally used in the creation and simplification of electronic circuits.
- We design models for these electronic circuits by making each of our ______
 a type of gate: a ______

Name	Graphic Symbol	Algebraic Function	Truth Table
AND	y @	F = xy	x y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	y F	F = x + y	x y F 0 0 0 0 1 1 1 0 1 1 1 1
Inverter	×	F = x'	x F 0 1 1 0
Buffer	×	F = x	x F 0 0 1 1
Exclusive-OR(XOR)	* F	$F = xy' + x'y$ $= x \oplus y$	x y F 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive-NOR or equivalence	× F	$F = xy + x'y'$ $= (x \oplus y)'$	x y F 0 0 1 0 1 0 1 0 0 1 1 1

Learning Objective: [2.5.4] - Simplify and Evaluate Boolean Algebra Expressions Using Algebraic Identities and Karnaugh Maps

Key Takeaways

☐ Fundamental Laws and Theorems of Boolean Algebra

$$\overline{1} = 0$$

$$\overline{0} = 1$$

• And, just like how we had the useful laws for equivalences involving connectives, we have the following _____

1.
$$X + 0 = X$$

2.
$$X + 1 = 1$$

3.
$$X + X = X$$

4.
$$X + \bar{X} = 1$$

5.
$$X \cdot 0 = 0$$

6.
$$X \cdot 1 = X$$

7.
$$X \cdot X = X$$

$$8. \ \ X \cdot \bar{X} = 0$$

9.
$$\bar{\bar{X}} = X$$

10.
$$X + Y = Y + X$$

11.
$$XY = YX$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

13.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

14.
$$X(Y + Z) = XY + XZ$$

15.
$$X + Y \cdot Z = (X + Y) \cdot (X + Z)$$

16. $\overline{X+Y} = \overline{X} \cdot \overline{Y}$

17. $\overline{X \cdot Y} = \overline{X} + \overline{Y}$

Creating	Karnaugh Ma	ps (K-Maps)

- To create a Karnaugh map:
 - Draw a grid, with ______ in the truth table.
 - ☐ The possible values of *A* are written as ______ on the top.
 - ☐ The possible values of *B* are written as ______ along the *LHS*.
- O To derive the ______ from the K-Map, we are looking for the ______.
- When there are 3 variables, it is often best practice to:
 - place one variable and its ______ as column headings, and
 - the possible _____ of values for the remaining variables as row levels.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- ▶ When Are They? 30 —minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

