

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½
Logic & Algorithms II [2.5]
Test Solutions

22 Marks. 1 Minute Reading. 18 Minutes Writing

Results:

Test Questions	/ 22	

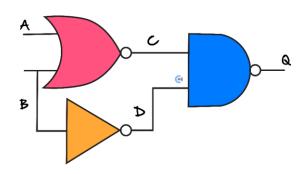
Section A: Test Questions (22 Marks)

Question 1 (4 marks)

Tick whether the following statements are **true** or **false**.

					True	False
a.	A tautology is an ass that is, it is false for a		-	lse in all situations;		~
b.	$A \rightarrow (A \land B)$ is not	a contradiction.			✓	
c.	The truth table for \neg	$(p \lor q)$ is:				
	р	q	$p \lor q$	$\sim (p \lor q)$		
	Т	T	Т	F		
	Т	F	F	T		✓
	F	Т	F	Т		
	F	F	F	Т		
d.	p and q are both true value of $q \land (\sim r)$?	e propositions and	r is a false proposit	ion. What is the truth	✓	
е.	The logical connective 'implies' (⇒) is false only when the first statement is true and the second statement is false.				✓	
f.	According to the properties of Boolean algebra, $1'1'$ (the complement of 1) is equal to 1.					✓
g.	In a logic switching circuit, an 'OR' gate represented by switches in parallel will output 1 if at least one switch is closed.					
h.	The absorption prope $x \land (x \lor y) = x$.	✓				

Question 2 (2 marks)


Construct the truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$.

р	q	¬р	$p \rightarrow q$	¬p ↔ q	(p→q)∧ (¬p↔q)
Т	Т	F	Т	F	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	F

Question 3 (2 marks)

The figure below shows a logic circuit and its incomplete truth table. Complete the below truth table.

Α	В	С	D	Q
0	0	1	1	0
0	1	0	0	1
1	0	0	1	1
1	1	0	0	1



Question 4 (5 marks)

For this logic statement,

$$X = 1 \text{ if } ((A \text{ is } 1 \text{ AND } B \text{ is } 1) \text{ OR } (B \text{ is } 1 \text{ AND } C \text{ is not } 1))$$

a. Draw the logical circuit. (2 marks)

b. Complete the truth table for the given logic statement. (3 marks)

A	В	C		Working space	X
P	\	В		С	X
()	0		0	0
()	0		1	0
()	1		0	1
()	1		1	0
1	1	0		0	0
1	1	0		1	0
1	1	1		0	1
1	1	1		1	1

Question 5 (3 marks)

Simplify each expression by algebraic manipulation and by using the laws of Boolean algebra.

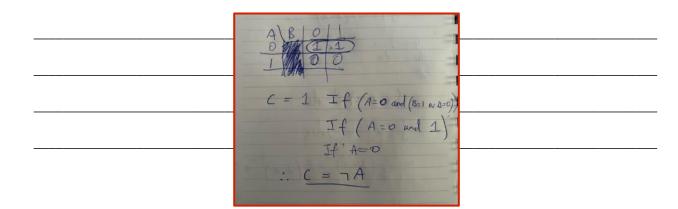
a. $\overline{(\bar{x} + \bar{x})} = (1 \text{ mark})$

$$\overline{(x+x)} = x$$

b. $(\bar{a} + \bar{b})(\bar{a} + b) = (2 \text{ marks})$

Question 6 (1 mark)						
Show that $AC + A$	Show that $AC + ABC = AC$ where $A, B, C \in \{0,1\}$.					
	Given Boolean expression: $AC + ABC = AC (1 + B)$ Now, using the null law $1 + B = 1$, the above expression can be written as: $AC.1 = AC$					

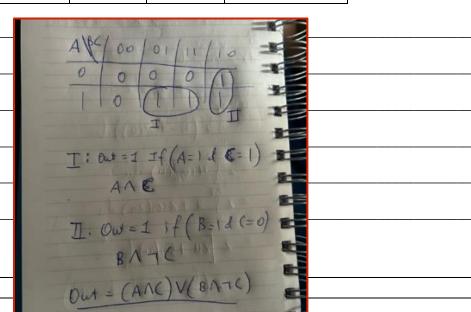
9	Space for Personal Notes



Question 7 (5 marks)

Using the given truth tables, draw the corresponding *K*-Maps and determine the Boolean expression.

a. (2 marks)


A	В	С
0	0	1
0	1	1
1	0	0
1	1	0

CONTOUREDUCATION

b. (3 marks)

A	В	С	Out
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

