

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½
Logic & Algorithms II [2.5]
Test

22 Marks. 1 Minute Reading. 18 Minutes Writing

Results:

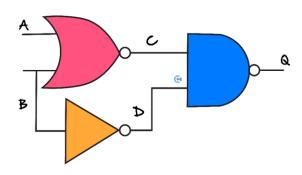
Test Questions	/ 22	

Section A: Test Questions (22 Marks)

Question 1 (4 marks)

Tick whether the following statements are **true** or **false**.

					True	False
a.		assertion of propositi r all possible values		se in all situations;		
b.	$A \rightarrow (A \land B)$ is n	ot a contradiction.				
c.	The truth table for	$\neg (p \lor q)$ is:				
	p	q	$p \lor q$	$\sim (p \lor q)$		
	Т	T	T	F		
	Т	F	F	Т		
	F	T	F	Т		
	F	F	F	Т		
d.	p and q are both to value of $q \land (\sim r)$		r is a false proposit	ion. What is the truth		
e.	The logical connective 'implies' (\Rightarrow) is false only when the first statement is true and the second statement is false.					
f.	According to the properties of Boolean algebra, $1'1'$ (the complement of 1) is equal to 1.					
g.		g circuit, an 'OR' gat one switch is closed.	_	itches in parallel will		
h.	The absorption pro $x \land (x \lor y) = x$.	perty in Boolean alg	ebra can be express	ed as		


Question 2 (2 marks)

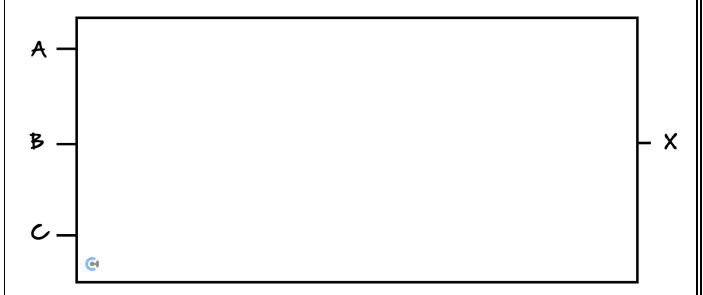
Construct the truth table for $(p \rightarrow q) \land (\neg p \leftrightarrow q)$.

Question 3 (2 marks)

The figure below shows a logic circuit and its incomplete truth table. Complete the below truth table.

A	В	C	D	Q
	0			
	1			
	0			
	1			

Space for Personal Note:	S
--------------------------	---



Question 4 (5 marks)

For this logic statement,

$$X = 1$$
 if ((A is 1 AND B is 1) OR (B is 1 AND C is not 1))

a. Draw the logical circuit. (2 marks)

b. Complete the truth table for the given logic statement. (3 marks)

A	В	С	Working space	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

CONTOUREDUCATION

Question 5 (3 marks)

Simplify each expression by algebraic manipulation and by using the laws of Boolean algebra.

- **a.** $\overline{(\bar{x} + \bar{x})} = (1 \text{ mark})$
- **b.** $(\bar{a} + \bar{b})(\bar{a} + b) = (2 \text{ marks})$

Question 6 (1 mark) Show that $AC + ABC = AC$ where $A, B, C \in \{0,1\}$.
Show that AC + ABC = AC where A, B, C \(\) \(\

Space for Personal Notes		

Question 7 (5 marks)

Using the given truth tables, draw the corresponding *K*-Maps and determine the Boolean expression.

a. (2 marks)

A	В	С
0	0	1
0	1	1
1	0	0
1	1	0

CONTOUREDUCATION

b. (3 marks)

A	В	С	Out
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

