

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Logic & Algorithms II [2.5]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2 - Pg 12
Supplementary Questions	Pg 13- Pg 22

Section A: Compulsory Questions

<u>Sub-Section [2.5.1]</u>: Understand the Basics of Logic and Propositional Statements

Question 1			
Translate the following to English $A = I$ study hard. B = I understand the material.	:		
C = I will pass the course.			
	$A \wedge B \Rightarrow C$		
			_
		•	
	If I study hard and I understand the material, then I will pass the course.		_
	material, then I will pass the course.		
			_
Sansa for Darsamal Notes			
Space for Personal Notes			

Question	2
Oucsuon	_

Translate the following to English:

J = I keep my phone charged.

K = I am reachable.

L = There is an emergency.

$$\neg J \wedge L \Rightarrow \neg K$$

If I do not keep my phone charged and there is an emergency, then I am not reachable.

Question 3

Translate into propositional logic using correct syntax:

If the student studies diligently, then he will pass the exam and not need a retake.

Let S = The student studies diligently. Let P = He passes the exam. Let R = He needs a retake.

 $S \Rightarrow (P \land \neg R)$

<u>Sub-Section [2.5.2]</u>: Construct Truth Tables and Recognise Equivalent Logical Expressions

Question 4

Write the truth table for:

$${\sim}(p \vee q)$$

р	q	p∨q	~ (pVq)
Т	Т	Т	F
Т	F	Т	F
F	Т	Т	F
F	F	F	Т

Question 5

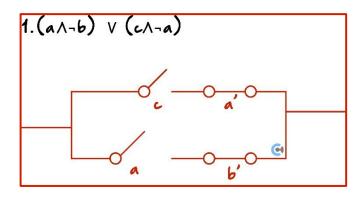
Write the truth table for:

$$(p \land q) \lor \sim q$$

Р	q	bγđ	~q	(p/q) V~q
Τ	Т	Т	F	Т
Τ	F	F	Т	Т
F	Т	F	F	F
F	F	F	Т	Т

Construct a truth table for the statement $(p \lor q) \land \neg r$.

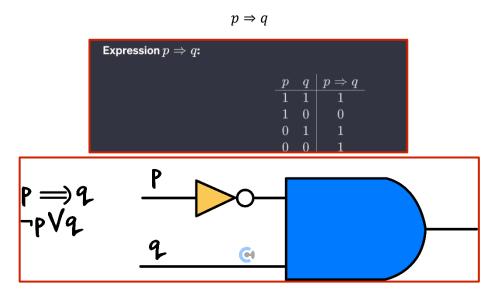
p	q	r	$p \lor q$	$\neg r$	$(p \lor q) \land \lnot r$
\overline{T}	T	T	T	F	F
T	T	F	T	T	T
T	F	T	T	F	F
T	F	F	T	T	T
F	T	T	T	F	F
F	T	F	T	T	T
F	F	T	F	F	F
F	F	F	F	T	F

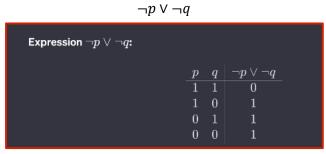

<u>Sub-Section [2.5.3]</u>: Represent Logical Expressions using Switching Circuits and Logic Gates

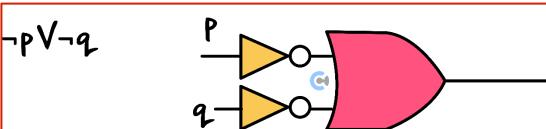
Question 7

Consider the expression:

$$(a \land \neg b) \lor (c \land \neg a)$$


Draw the switching circuit that is represented by this expression.


Use logic gates to represent the following expression and draw the corresponding truth table:



Question 9

Use logic gates to represent the following expression and draw the corresponding truth table:

<u>Sub-Section [2.5.4]</u>: Simplify and Evaluate Boolean Algebra Expressions using Algebraic Identities and Karnaugh Maps

Question 10

Simplify each expression by algebraic manipulation.

a. a + 0 =

b. $a + \bar{a} =$

c. a + ab =

a(1+b)=a

Question 11

Simplify each expression by algebraic manipulation.

a. $a(\bar{a} + b) =$

 $a\bar{a} + ab = ab$

b. $ab + \bar{a}b =$

 $b(a+\bar{a})=b$

c. a(a+b+c) =

 $aa + ab + ac + \cdots = a + ab + ac + \ldots = a$

Question 12

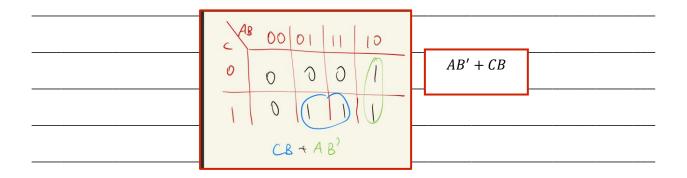
Simplify each expression by algebraic manipulation where f(a, b, c) = a + b + c.

a. f(a, b, ab) =

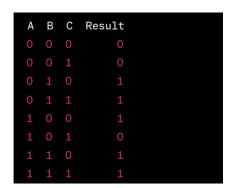
a + b + ab = a + b

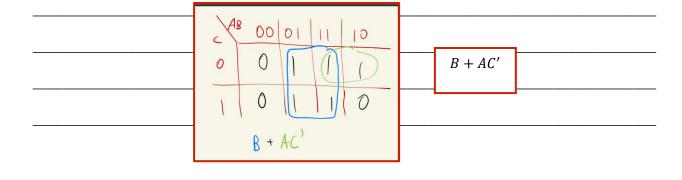
b. $f(a,b,\bar{a}\cdot\bar{b}) =$

 $a+b+\bar{a}\bar{b}=a+b+\bar{a}=1$


c. $f[a, b, (\overline{ab})] =$

 $a + b + (\overline{ab}) = a + b + \overline{a} + \overline{b} = 1$




Using a Karnaugh map, identify the Boolean expression corresponding to each of the following truth tables.

a.

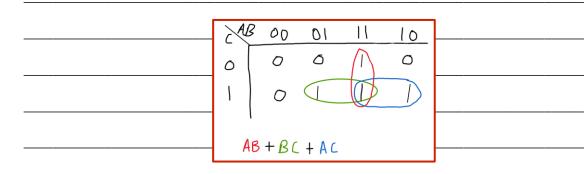
b.

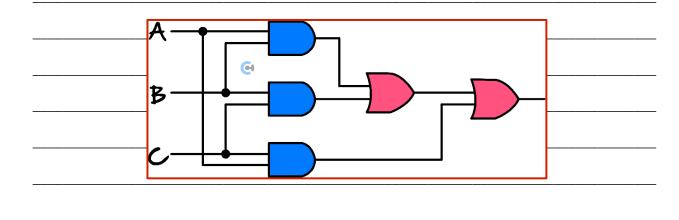
Sub-Section: The 'Final Boss'

Question 14

A traffic control system at an intersection is designed to activate a warning signal based on the status of three road sensors (A,B,C). Each sensor detects whether a vehicle is present (1) or absent (0). If at least two of the three sensors detect vehicles (i.e., receive a '1' signal), the warning light turns on (1) to alert drivers. Otherwise, the light remains off (0).

a. Construct a truth table with entries 0s and 1s that describes the operation of the traffic light control system.


b. Derive a Boolean expression for the traffic light based on your truth table from **part a.**


 $\bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$

CONTOUREDUCATION

c. Use a Karnaugh map to simplify the Boolean expression obtained in part b.

d. Draw a logic circuit for the traffic light system using logic gates, based on your simplified Boolean expression from **part c.**

Section B: Supplementary Questions

<u>Sub-Section [2.5.1]</u>: Understand the Basics of Logic and Propositional Statements

Question 15		
Translate the following to English: P = I eat healthy. Q = I exercise regularly. R = I will lose weight.		
	$P \wedge Q \Rightarrow R$	
	If I eat healthy and I exercise regularly, then I will lose weight.	

Question 16 Translate the following to English: A = I go jogging. B = The weather is good. C = I will feel energised. $\neg B \Rightarrow (\neg A \land \neg C)$ If the weather is not good, then I will not go jogging and I will not feel energised.

_	_	
/ \	estion	17
	eciian	

Translate into propositional logic using correct syntax:

If the team wins the match, then the fans will celebrate and the opposing team will be disappointed.

Let W = The team wins the match. Let C = The fans celebrate. Let D = opposing team is disappointed. $W \Rightarrow (C \land D)$

Question 18

Translate into propositional logic using correct syntax:

If the baker uses old flour, then the bread will not rise and the customers will complain.

Let F = The baker uses old flour. Let B = The bread rises. Let C = The customers complain. $F \Rightarrow (\neg B \land C)$

<u>Sub-Section [2.5.2]</u>: Construct Truth Tables and Recognise Equivalent Logical Expressions

Question 19

Ď

Write the truth table for:

$$\sim p \vee q$$

р	q	~p	~pvq
Т	Т	F	Т
Т	F	F	F
F	T	Т	Т
F	F	Т	Т

Question 20

Write the truth table for:

$$(p \land q) \lor (p \lor q)$$

р	q	p∧q	p∨q	(p^q)v(pvq)
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	F	F

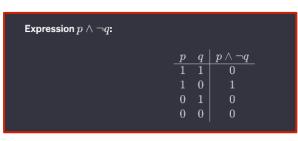
Construct a truth table for the statement $(p \oplus q) \Rightarrow r$, where \oplus is the exclusive or.

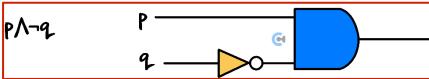
p	q	r	$p \oplus q$	$(p \oplus q) \Rightarrow r$
\overline{T}	T	T	F	T
T	T	F	F	T
T	F	T	T	T
T	F	F	T	F
F	T	T	T	T
F	T	F	T	F
F	F	T	F	T
F	F	F	F	T
				I

Question 22

Construct a truth table for the statement $\neg (p \land q) \oplus r$.

p	q	r	$p \wedge q$	$\neg (p \wedge q)$	$\neg (p \land q) \oplus r$
T	T	T	T	F	T
T	T	F	T	F	F
T	F	T	F	T	F
T	F	F	F	T	T
F	T	T	F	T	F
F	T	F	F	T	T
F	F	T	F	T	F
F	F	F	F	T	T


<u>Sub-Section [2.5.3]</u>: Represent Logical Expressions using Switching Circuits and Logic Gates


Question 23

j

Use logic gates to represent the following expression and draw the corresponding truth table:

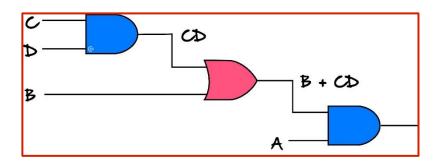
$$p \land \neg q$$

Question 24

Use logic gates to represent the following expression and draw the corresponding truth table:

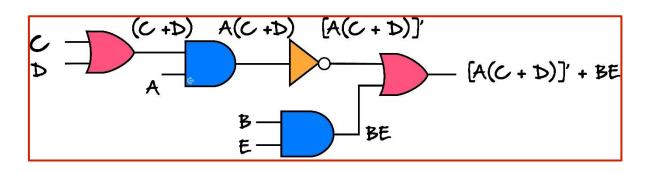
$$\neg(p \land q)$$

Expression
$$egin{array}{c|c} (p \land q) : & & & & \\ \hline \hline p & q & \neg (p \land q) \\ \hline 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ \hline \end{array}$$



Sketch a logic gate for the following expression:

$$A(B + CD)$$



Question 26

Sketch a logic gate for the following expression:

$$[A(C+D)]' + BE$$

<u>Sub-Section [2.5.4]</u>: Simplify and Evaluate Boolean Algebra Expressions using Algebraic Identities and Karnaugh Maps

s 💮

Question 27

Simplify each expression by algebraic manipulation.

a. $\bar{a} \cdot 0 =$

0

b. a + a =

а

c. $a + \bar{a}b =$

 $(a+\bar{a})(a+b)=a+b$

Question 28

Simplify each expression by algebraic manipulation.

a. $y + y\bar{y} =$

y

SM12 [2.5] - Logic & Algorithms II - Homework Solutions

b. $xy + x\bar{y} =$

 $x(y+\bar{y})=x$

 $\mathbf{c.} \quad \bar{x} + y\bar{x} =$

 $\bar{x}(1+y) = \bar{x}$

Question 29

Simplify each expression by algebraic manipulation.

a. $(w + \bar{x} + y + \bar{z})y =$

y

b. $(x + \bar{y})(x + y) =$

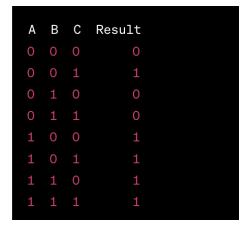
x

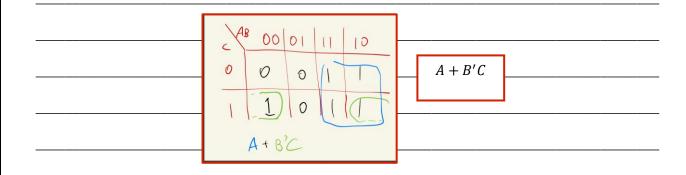
c. $w + (w\bar{x}yz) =$

 $w(1+\bar{xyz})=w$

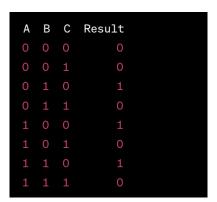
Simplify the following expression by algebraic manipulation:

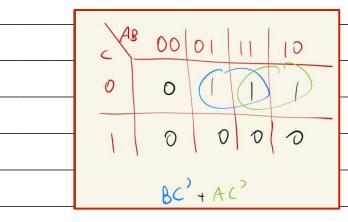
$$(x+z)(\bar{x}+y)(z+y) =$$


$$xy + z \bar{x}$$


Question 31

Using a Karnaugh map, identify the Boolean expression corresponding to each of the following truth tables:


a.



b.

$$(A+B)C' = AC' + BC'$$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

