

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Logic & Algorithms II [2.5]

Homework

Homework Outline:

Compulsory Questions	Pg 2 - Pg 12
Supplementary Questions	Pg 13- Pg 22

Section A: Compulsory Questions

<u>Sub-Section [2.5.1]</u>: Understand the Basics of Logic and Propositional Statements

Question 1	
Translate the following to English: A = I study hard. B = I understand the material. C = I will pass the course.	
$A \wedge B \Rightarrow C$	
Space for Personal Notes	

Question 2	
Translate the following to English: $J = I$ keep my phone charged. $K = I$ am reachable. $L = T$ here is an emergency.	
$\neg J \wedge L \Rightarrow \neg K$	
	1 1 1
Question 3	
Translate into propositional logic using correct syntax:	
If the student studies diligently, then he will pass the exam and not need a retake.	

<u>Sub-Section [2.5.2]</u>: Construct Truth Tables and Recognise Equivalent Logical Expressions

Question 4

Write the truth table for:

 $\sim (p \lor q)$

Question 5

Write the truth table for:

$$(p \land q) \lor \sim q$$

Question 6	الألا
Construct a truth table for the statement $(p \lor q) \land \neg r$.	

<u>Sub-Section [2.5.3]</u>: Represent Logical Expressions using Switching Circuits and Logic Gates

	_
Ouestion	7
Oucsuon	•

Consider the expression:

$$(a \land \neg b) \lor (c \land \neg a)$$

Draw the switching circuit that is represented by this expression.

Question 8

Use logic gates to represent the following expression and draw the corresponding truth table:

$$p \Rightarrow q$$

Question 9

Use logic gates to represent the following expression and draw the corresponding truth table:

$$\neg p \lor \neg q$$

<u>Sub-Section [2.5.4]</u>: Simplify and Evaluate Boolean Algebra Expressions using Algebraic Identities and Karnaugh Maps

Question 10

Simplify each expression by algebraic manipulation.

a. a + 0 =

b. $a + \bar{a} =$

c. a + ab =

Question 11

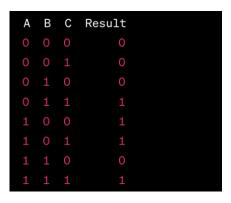
Simplify each expression by algebraic manipulation.

 $\mathbf{a.} \quad a(\bar{a}+b) =$

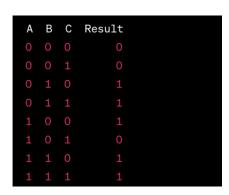
- **b.** $ab + \bar{a}b =$
- _____
- **c.** a(a + b + c) =

Question 12

Simplify each expression by algebraic manipulation where f(a, b, c) = a + b + c.


- $\mathbf{a.} \quad f(a,b,ab) =$
- **b.** $f(a,b,\bar{a}\cdot\bar{b}) =$
- c. $f[a, b, (\overline{ab})] =$

Question 13


Using a Karnaugh map, identify the Boolean expression corresponding to each of the following truth tables.

a.

b.

Sub-Section: The 'Final Boss'

Question 14
A traffic control system at an intersection is designed to activate a warning signal based on the status of three road sensors (A,B,C) . Each sensor detects whether a vehicle is present (1) or absent (0). If at least two of the three sensors detect vehicles (i.e., receive a '1' signal), the warning light turns on (1) to alert drivers. Otherwise, the light remains off (0).
a. Construct a truth table with entries 0s and 1s that describes the operation of the traffic light control system.
b. Derive a Boolean expression for the traffic light based on your truth table from part a.

c.	Use a Karnaugh map to simplify the Boolean expression obtained in part b.		
		-	
		-	
		-	
		-	
d.	Draw a logic circuit for the traffic light system using logic gates, based on your simplified Boolean express from part c.	ssion	
		-	
		-	
		-	
		-	
		-	
		-	
		-	
Sp	Space for Personal Notes		

Section B: Supplementary Questions

<u>Sub-Section [2.5.1]</u>: Understand the Basics of Logic and Propositional Statements

Question 15	
Translate the following to English: P = I eat healthy. Q = I exercise regularly. R = I will lose weight.	
$P \wedge Q \Rightarrow R$	
	_
	_

Question 16		
Translate the following to English:		
A = I go jogging. B = The weather is good. C = I will feel energied.		
C = I will feel energised.		
	$\neg B \Rightarrow (\neg A \land \neg C)$	

Question 17	
Translate into propositional logic using correct syntax:	
If the team wins the match, then the fans will celebrate and the opposing team will be disappointed.	
Question 18	Ó
Translate into propositional logic using correct syntax:	
If the baker uses old flour, then the bread will not rise and the customers will complain.	
	
Space for Personal Notes	

<u>Sub-Section [2.5.2]</u>: Construct Truth Tables and Recognise Equivalent Logical Expressions

^	10
Question	14
Oucsuon	

Write the truth table for:

 $\sim p \vee q$

Question 20

Write the truth table for:

 $(p \land q) \lor (p \lor q)$

CONTOUREDUCATION

Question 21

Construct a truth table for the statement $(p \oplus q) \Rightarrow r$, where \oplus is the exclusive or.

Question 22

Construct a truth table for the statement $\neg(p \land q) \oplus r$.

<u>Sub-Section [2.5.3]</u>: Represent Logical Expressions using Switching Circuits and Logic Gates

Question 23

Use logic gates to represent the following expression and draw the corresponding truth table:

$$p \land \neg q$$

Question 24

Use logic gates to represent the following expression and draw the corresponding truth table:

$$\neg(p \land q)$$

Question 25

Sketch a logic gate for the following expression:

$$A(B + CD)$$

Question 26

Sketch a logic gate for the following expression:

$$[A(C+D)]' + BE$$

<u>Sub-Section [2.5.4]</u>: Simplify and Evaluate Boolean Algebra Expressions using Algebraic Identities and Karnaugh Maps

Question 27

Simplify each expression by algebraic manipulation.

 $\mathbf{a.} \quad \bar{a} \cdot 0 =$

b. a + a =

 $\mathbf{c.} \quad a + \bar{a}b =$

Question 28

Simplify each expression by algebraic manipulation.

 $\mathbf{a.} \quad y + y\overline{y} =$

b. $xy + x\bar{y} =$

 $\mathbf{c.} \quad \bar{x} + y\bar{x} =$

Question 29

Simplify each expression by algebraic manipulation.

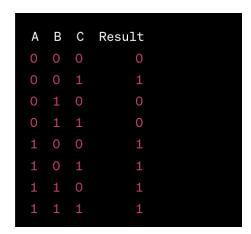
a. $(w + \bar{x} + y + \bar{z})y =$

b. $(x + \bar{y})(x + y) =$

 $\mathbf{c.} \quad w + (w\bar{x}yz) =$

Question	30
Question	JU

Simplify the following expression by algebraic manipulation:


$$(x+z)(\bar x+y)(z+y)=$$

Question 31

Using a Karnaugh map, identify the Boolean expression corresponding to each of the following truth tables:

a.

b.		
	A B C Result	
	0 0 0 0	
	0 0 1 0	
	0 1 0 1	
	0 1 1 0	
	1 0 0 1	
	1 0 1 0	
	1 1 0 1 1 1 1 0	
	1 1 1 0	
		

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

