

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½
Logic & Algorithms I [2.4]

Test Solutions

24.5 Marks. 1 Minute Reading. 20 Minutes Writing.

Results:

Test Questions	/ 24.5	

Section A: Test Questions (24.5 Marks)

(Question 1 (2.5 marks)			
Γ	ick '	whether the following statements are true or false .		
		Statement	True	False
	a.	Selections allow us to selectively perform an operation.	✓	
	b.	For loops can be used when we don't know how many loops it will exactly take to finish.		✓
	c.	Infinite loop can be created if the variable controlling the loop is updated within the operation of the loop.	~	
	d.	Function can be defined to hold an algorithm and can be called within another algorithm.	✓ /	
	e.	List can be used to hold multiple values at once.	✓	

Space for Personal Notes	

Question 2 (2 marks)

Turn the following hybrid function into an algorithm:

$$f(n) = \begin{cases} 2n+1, & \text{if } n \text{ is odd} \\ 4, & \text{if } n=4 \\ 3n-2, & \text{otherwise} \end{cases}$$

Step 1: Input n.

Step 2: If n is odd, then $y \leftarrow 2n + 1$ else if n = 4, then $y \leftarrow 4$ else $y \leftarrow 3n - 2$.

Step 3: Print *y*.

Question	3	<i>(</i> 2.	marks'	١
Oucsuon	•	\	marks.	,

Write an algorithm to find the first six terms of the arithmetic sequence with the first term 19 and common difference 3.

Step 1:
$$T \leftarrow 19$$
 and $n \leftarrow 1$.

Step 2: Print n and print T.

Step 3:
$$T \leftarrow T + 3$$
 and $n \leftarrow n + 1$.

Step 4: Print n and print T.

Step 5: Repeat from Step 3 while n < 6.

Question	4	(2	marks`)
O ucouon	-	١	munico.	,

James decides to invest \$50000 at an interest rate of 3% compounded annually. Construct an algorithm that outputs the number of years needed for James' initial investment to double.

Step 1:
$$I$$
 ← 50000 and T = 0.

Step 2:
$$I \leftarrow 1.03I$$
 and $T \leftarrow T + 1$.

Step 3: **Repeat** from step 2 while I < 10000.

Step 4: Print T.

Space for Personal Notes

Question 5 (6 marks)

Consider the sequence 3,5,7,9,...,2n + 1.

Using pseudocode, write an algorithm to calculate:

a. The sum of the terms in this sequence. (2 marks)

 input n	
input n sum $\leftarrow 0$ for i from 1 to n	
 for i from 1 to n	
$sum \leftarrow sum + 2i + 1$	
 End for	
Print sum	

b. The product of the terms in this sequence. (2 marks)

input n	
input n product $\leftarrow 1$	
 for i from 1 to n	
$product \leftarrow product \times (2i + 1)$	
End for	
Print <i>product</i>	

c. Provide a table of values to demonstrate each algorithm when n = 3. (2 marks)

$\frac{1}{2}$	i	sum
		0
	1	0 + 3 = 3
	2	3 + 5 = 8
	3	8 + 7 = 15

i	sum	
	1	
1	$1 \times 3 = 3$	
2	$3 \times 5 = 15$	
3	$15 \times 7 = 105$	

Space for Personal Notes

Question 6 (3 marks) Using pseudocodes, constru-	ct an algorithm for the following:	
An algorithm that outputs th	ne remainder of a division with a given input of	f number and divisor.
	input number, divisor remainder ← number while remainder ≥ divisor remainder ← remainder—divisor end while	
	print remainder	

Space for Personal Notes	


```
Question 7 (4 marks)
```

Using pseudocodes, construct an algorithm for the following:

An algorithm that reads 3 numbers (a, b, c) and writes them in ascending order.

```
input a, b, c
if a \ge b then
           if a \ge c then
                       max \leftarrow a
                       if b \ge c then
                                  mid \leftarrow b
                                  min \leftarrow c
                       else
                                  mid \leftarrow c
                                  min \leftarrow b
                       end if
           else
                       max \leftarrow c
                       mid \leftarrow a
                       min \leftarrow b
           end if
```

```
else if a < b then
          if a \ge c then
                      max \leftarrow b
                      mid \leftarrow a
                     min \leftarrow c
          else
                     min \leftarrow a
                     if b \ge c then
                                max \leftarrow b
                                mid \leftarrow c
                      else
                                max \leftarrow c
                                mid \leftarrow b
                      end if
          end if
end if
print min, mid, max.
```

Space for Personal Notes

Question 8 (3 marks)

Using pseudocode, write an algorithm to find the positive integer solutions of the equation.

$$43x + 17y + 7z = 200$$

We use three loops to run through all the possible positive integer values of x, y and z. We first note that:

$$200 \div 43 \approx 4.7$$

end for

$$200 \div 17 \approx 11.8$$
,

$$200 \div 7 \approx 28.6$$

Therefore, we know that we will find all the solutions from the following nest of three loops.

for
$$x$$
 from 1 to 4

for y from 1 to 11

for z from 1 to 28

if $43x + 17y + 7z = 200$ then

print (x, y, z)

end if

end for

Space f

This algorithm prints the three solutions (1, 1, 20), (1, 8, 3) and (2, 3, 9).

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- ▶ Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

G

Booking Link

bit.ly/contour-specialist-consult-2025

