

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½
Logic & Algorithms I [2.4]
Test

24.5 Marks. 1 Minute Reading. 20 Minutes Writing.

Results:

Test Questions	/ 24.5	

Section A: Test Questions (24.5 Marks)

Question 1 (2.5 marks)

Tick whether the following statements are **true** or **false**.

Statement		True	False
a.	Selections allow us to selectively perform an operation.		
b.	For loops can be used when we don't know how many loops it will exactly take to finish.		X
c.	Infinite loop can be created if the variable controlling the loop is updated within the operation of the loop. Q. g. while & > So		
d.	Function can be defined to hold an algorithm and can be called within another algorithm.	/	
e.	List can be used to hold multiple values at once.		

Sp	ace for Personal Notes

Question 2 (2 marks)

Turn the following hybrid function into an algorithm:

$$f(n) = \begin{cases} 1 - 2n, & \text{if } n \text{ is even} \\ 4, & \text{if } n = 5 \\ 2n + 1, & \text{otherwise} \end{cases}$$

Step 1: Input *n*.

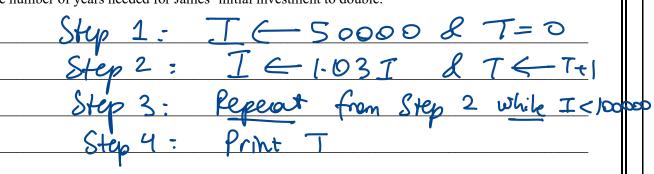
Step 2: If n is even, then $y \leftarrow 1 - 2n$ else if n = 5, then $y \leftarrow 4$ else $y \leftarrow 2n + 1$.

Step 3: Print y.

Question 3 (2 marks)

Write an algorithm to find the first six terms of the arithmetic sequence with the first term 19 and common difference 3.

Space for Personal Notes



for i from 1 +0 6 $T \leftarrow 19 + (i-1) \times 3$ Point T end for

CONTOUREDUCATION

Question 4 (2 marks)

James decides to invest \$50000 at an interest rate of 3% compounded annually. Construct an algorithm that outputs the number of years needed for James' initial investment to double.

Space for Personal Notes

```
(1.03)^{(23)}50000 = 98679.3256
```

 $(1.03)^(24)*50000 = 101639.705$

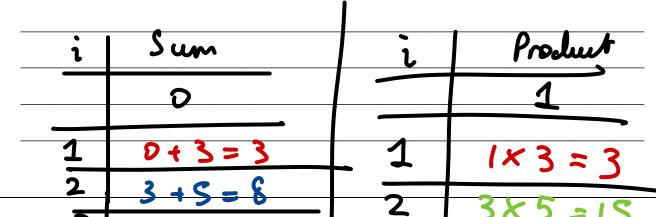
ONTOUREDUCATION

Question 5 (6 marks)

Consider the sequence 3,5,7,9,...,2n + 1.

Using pseudocode, write an algorithm to calculate:

a. The sum of the terms in this sequence. (2 marks)


For i from 1 to n

Sum C—Sum + (2i+1)

b. The product of the terms in this sequence. (2 marks)

product. - product × (2i+1)

c. Provide a table of values to demonstrate each algorithm when n = 3. (2 marks)

Space for Personal Notes

Question 6 (3 marks) Using pseudocodes, construct an algorithm for the following:			
An algorithm that outputs the remainder of a division with a given input of number and divisor.			
	input number, divisor remainder ← number while remainder ≥ divisor remainder ← remainder—divisor end while print remainder		

	Space for Personal Notes
I	

Question 7 (4 marks)

Using pseudocodes, construct an algorithm for the following:

An algorithm that reads 3 numbers (a, b, c) and writes them in ascending order.

Pont (a,b,c Else

Print (a,c,b)

Space for Personal Notes

Else

Print (b,a,c)
Print (b,c,a)

End if FISE

If $a \le b$, then

Print (c,a,b)Print (c,b,a)

Question 8 (3 marks)

Using pseudocode, write an algorithm to find the positive integer solutions of the equation.

$$43x + 17y + 7z = 200$$

```
1 for x in range(1,5):
2 for y in range(1,12):
3 for z in range(1,29):
4 if 43*x+17*y+7*z == 200:
5 print((x,y,z)) === Code Execution Successful ===
6
```

Space for Personal Notes

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

