

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

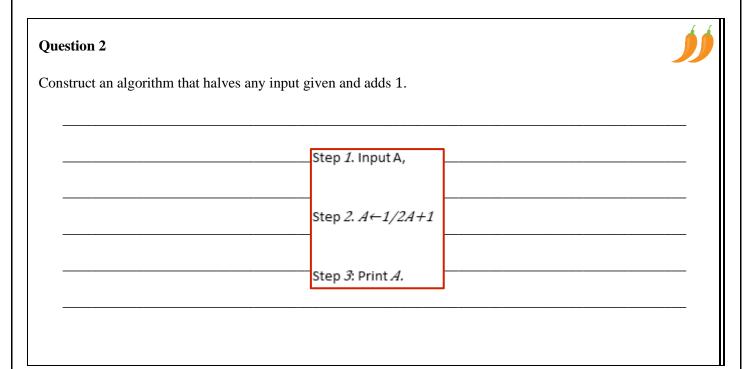
# VCE Specialist Mathematics ½ Logic & Algorithms I [2.4]

**Homework Solutions** 

### **Homework Outline:**

| Compulsory Questions    | Pg 2- Pg 14  |  |
|-------------------------|--------------|--|
| Supplementary Questions | Pg 17- Pg 26 |  |






## Section A: Compulsory Questions



## Sub-Section [2.4.1]: Write and Understand Basic Algorithms

| Question 1                                    |                                 | ﴿    |
|-----------------------------------------------|---------------------------------|------|
| Construct an algorithm that triples any input | at given.                       |      |
|                                               | Step 1. Input A,                | <br> |
|                                               | Step 1. Input A,                |      |
|                                               | Step 2. A←3A                    |      |
|                                               | Step <i>3</i> : Print <i>A.</i> |      |
|                                               |                                 |      |
|                                               |                                 |      |





| Question 3                            |                                 | الرار المراد الم |
|---------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construct an algorithm that subtracts | 5 from an input and then mu     | ultiplies by 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Step 1. Input A                 | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       | Step 2. $A \leftarrow 3(A - 5)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Step 3. Print <i>A</i>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                 | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Space for Personal Notes |  |
|--------------------------|--|
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |
|                          |  |





# <u>Sub-Section [2.4.2]</u>: Understanding and Evaluating Algorithms that have Conditional Statements and Represent Hybrid Functions as Algorithms

### **Question 4**

**a.** Turn the following function into an algorithm.

$$f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

Step 1: Input xStep 2: If  $x \ge 0$ , then  $y \leftarrow x$ else  $y \leftarrow -x$ Step 3: Print y.

**b.** Evaluate the final output:

$$a \leftarrow 1$$

$$b \leftarrow 1$$
if  $a + b < 7$ 

$$b \leftarrow b - 2$$

$$a \leftarrow a + 3$$
end if
print  $a, b$ .

a = 4 and b = -1.



### **Question 5 Tech-Active.**



Following is an algorithm for calculating the Australian tax.

Step 1: Input income.

Step 2a: If income  $\leq$  18200, then tax  $\leftarrow$  0.

Step 2b: Else If income  $\leq$  37000, then tax  $\leftarrow$  0.19  $\times$  income - 3458.

Step 2c: Else If income  $\leq$  90000, then tax  $\leftarrow$  0.325  $\times$  income - 8453.

Step 2d: Else If income  $\leq$  180000, then tax  $\leftarrow$  0.37  $\times$  income - 12503.

Step 2e: Else If  $tax \leftarrow 0.45 \times income - 26903$ .

Step 3: Print tax.

**a.** Calculate tax for 200000.

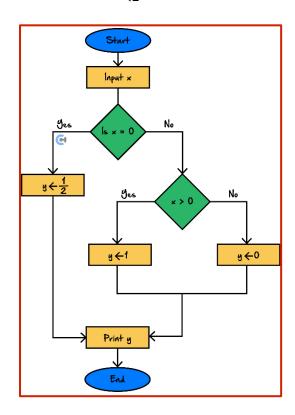
 $200000 \times 0.45 - 26903 = 63097$ 

**b.** Calculate tax for 45888.

 $45888 \times 0.325 - 8453 = 6460.6$ 



c. Calculate tax for 90001.


 $90001 \times 0.37 - 12503 = 20797.37$ 

### **Question 6**



**a.** Using a flowchart, describe an algorithm of the following hybrid function.

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \\ \frac{1}{2} & x = 0 \end{cases}$$



## **C**ONTOUREDUCATION

| b. | Write an  | algorithm | for the  | following   | hybrid      | function.    |
|----|-----------|-----------|----------|-------------|-------------|--------------|
| ν. | Wille all | argoriumi | ioi tiic | 10110 11115 | 11 9 01 1 0 | i dilettoii. |

$$f(x) = \begin{cases} 1 & x > 3 \\ 0 & x = 3 \\ -1 & x < 3 \end{cases}$$

Step 1: Input *x* 

Step 2: If x > 3,  $y \leftarrow 1$ 

else if x = 3. then  $y \leftarrow 0$ 

else  $y \leftarrow -1$ 

Step 3: print *y* 

| Space for F | Personal | Notes |
|-------------|----------|-------|
|-------------|----------|-------|





## Sub-Section [2.4.3]: Understand and Evaluate Algorithms with Loops

| Question 7                                                                                                                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Check whether the following algorithm has any problems. If there is a problem, state the problem; if there is no problem, give the final output of the algorithm. |  |  |  |
| Step 1: $A \leftarrow 60$                                                                                                                                         |  |  |  |
| Step 2: $A \leftarrow 2A - 50$                                                                                                                                    |  |  |  |
| Step 3: Repeat 2 while $A > 60$ .                                                                                                                                 |  |  |  |
|                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                   |  |  |  |
| It goes on infinitely. The condition of the loop is ALWAYS met.                                                                                                   |  |  |  |
| - <u></u> -                                                                                                                                                       |  |  |  |
|                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                   |  |  |  |
| It goes on infinitely. The condition of the loop is ALWAYS met.                                                                                                   |  |  |  |



| Question | 8 |
|----------|---|
|          |   |



Evaluate the final output.

$$a \leftarrow 1$$
  
 $b \leftarrow 1$   
while  $a + b < 7$   
 $b \leftarrow b - 2$   
 $a \leftarrow a + 3$ .  
end while  
print  $a, b$ .

$$a = 13$$
 and  $b = -7$ .





**a.** Evaluate the final output:

$$c \leftarrow 0$$
for a from 1 to 2
for b from 1 to 2
 $c \leftarrow c - ab$ 
end for
end for
print c.

a = 13 and b = -7.

 ${f b.}$  Construct an algorithm that outputs the largest multiple of 5 that is less than or equal to 100.

| Step 1: $x \leftarrow 0$<br>Step 2: $x \leftarrow x + 5$<br>Step 3: Repeat 2 while $x \le 100$ .<br>Step 4: Print $x$ . |
|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                         |
|                                                                                                                         |





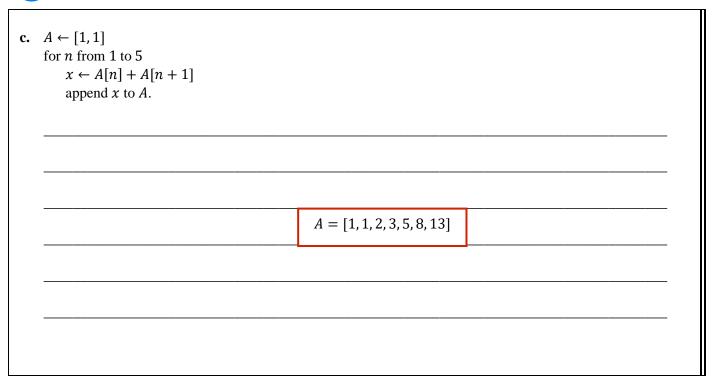
## <u>Sub-Section [2.4.4]</u>: Write and Evaluate Functions using Pseudocode

|    | uestion 10                                                            |  |  |  |  |
|----|-----------------------------------------------------------------------|--|--|--|--|
| Us | sing pseudocode, define a function for finding each of the following: |  |  |  |  |
| a. | Finding the area of the triangle given base and height.               |  |  |  |  |
|    |                                                                       |  |  |  |  |
|    |                                                                       |  |  |  |  |
|    | Define area for $(b, h)$ $A \leftarrow \frac{1}{2}bh$                 |  |  |  |  |
|    | return A.                                                             |  |  |  |  |
|    |                                                                       |  |  |  |  |
|    |                                                                       |  |  |  |  |
| h. | Finding the surface area of a sphere given radius.                    |  |  |  |  |
| ν. | I making the surface that of a sphere given radius.                   |  |  |  |  |
|    |                                                                       |  |  |  |  |
|    | Define area sphere $(r)$                                              |  |  |  |  |
|    | $A \leftarrow 4\pi r$                                                 |  |  |  |  |
|    | return A.                                                             |  |  |  |  |
|    |                                                                       |  |  |  |  |
|    |                                                                       |  |  |  |  |
|    |                                                                       |  |  |  |  |
|    |                                                                       |  |  |  |  |
| c. | Define a function for modulus.                                        |  |  |  |  |
| c. | Define a function for modulus.                                        |  |  |  |  |
| c. |                                                                       |  |  |  |  |
| c. | Define modulus $(X)$ if $X > 0$                                       |  |  |  |  |
| c. | Define modulus $(X)$ if $X > 0$ return $X$                            |  |  |  |  |
| c. | Define modulus $(X)$ if $X > 0$                                       |  |  |  |  |





Evaluate the following algorithm:


a.  $A \leftarrow [\ ]$ for n from 1 to 6 if n = even then append 1 to A. else append 0 to A.

A = [0, 1, 0, 1, 0, 1]

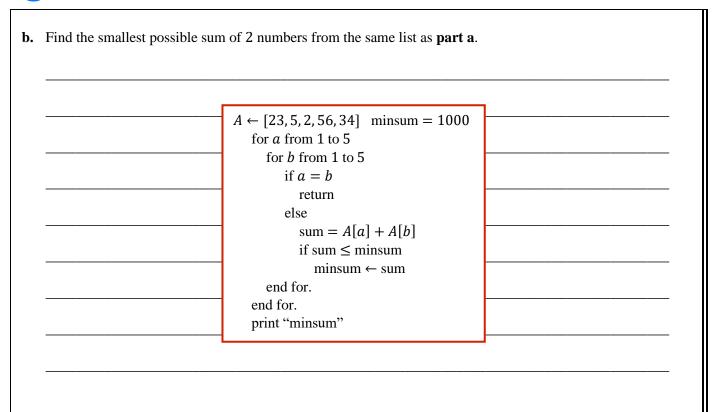
**b.**  $A \leftarrow [\ ]$  for n from 1 to 5  $B \leftarrow 2n + 1$  append B to A.

A = [3, 5, 7, 9, 11]








Using pseudocode, construct an algorithm for the following:

**a.** Find the biggest possible product from any 2 numbers from the list = (23, 5, 2, 56, 34).

**NOTE:** Cannot multiply numbers by themselves.

|                                  | 1        |
|----------------------------------|----------|
| <br>Maxproduct= 1                |          |
| for $a$ from 1 to 5              |          |
| <br>for <i>b</i> from 1 to 5     |          |
| if $a = b$                       |          |
| <br>break                        |          |
| else                             |          |
| <br>$product = A[a] \times A[b]$ |          |
| if product ≥ max product         |          |
| <br>max product ← product        |          |
| end for.                         |          |
| <br>end for.                     |          |
| print "maxproduct"               |          |
|                                  | <u> </u> |
|                                  |          |





|   | Space for Personal Notes |
|---|--------------------------|
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
|   |                          |
| 1 |                          |





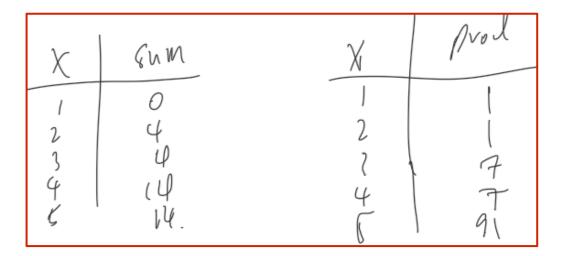
### **Sub-Section:** Final Boss

#### **Question 13**

Consider the sequence 1, 4, 7, 10, 13, 16, 19...3(n-1) + 1.

Using pseudocode, write an algorithm for:

**a.** Calculate the sum of the even terms in the sequence up to the  $n^{th}$  term.


Step 1: input int (n), sum  $\leftarrow 0$ Step 2: for x from 1 to nif x = eventerm  $\leftarrow 3(x - 1) + 1$ sum  $\leftarrow$  sum + term end for. Step 3: print sum.

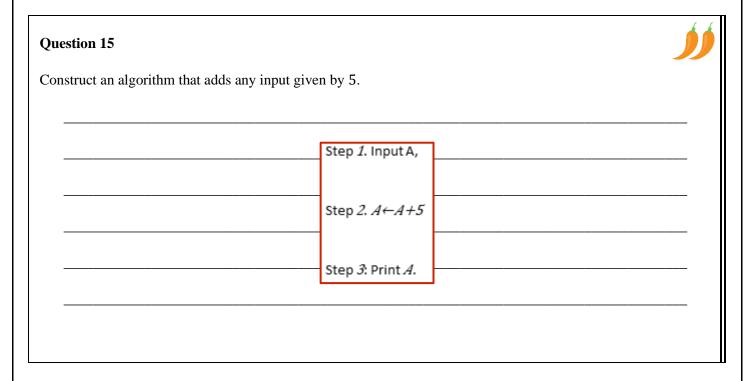
**b.** Calculate the product of the odd terms in the sequence up to the  $n^{th}$  term.

Step 1: input int (n), prod  $\leftarrow 1$ Step 2: for x from 1 to nif x = oddterm  $\leftarrow 3(x - 1) + 1$ prod  $\leftarrow$  prod  $\times$  term end for. Step 3: print prod.



**c.** Construct a table of values to demonstrate each algorithm when n = 5.






## Section B: Supplementary Questions



## Sub-Section [2.4.1]: Write and Understand Basic Algorithms

| uestion 14                   |                                  |  |
|------------------------------|----------------------------------|--|
| onstruct an algorithm that m | ultiplies any input given by 10. |  |
|                              |                                  |  |
|                              | Step 1. Input A,                 |  |
|                              |                                  |  |
|                              | Step 2. A←10A                    |  |
|                              |                                  |  |
|                              | Step 3: Print A.                 |  |
|                              |                                  |  |

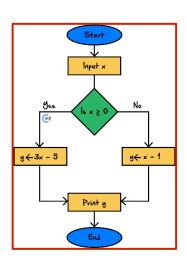




| Question 16                                  |                                 | الرازار المراز |
|----------------------------------------------|---------------------------------|----------------|
| Construct an algorithm that subtracts any in | put given by 5 and mult         | tiplies by 2.  |
|                                              | Step 1. Input A,                | <br>1          |
|                                              |                                 |                |
|                                              | Step <i>2. A←1/2A-5</i><br>—    |                |
|                                              | Step <i>3</i> : Print <i>A.</i> |                |
|                                              |                                 |                |
|                                              |                                 |                |

| Space for Personal Notes |  |  |  |
|--------------------------|--|--|--|
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |



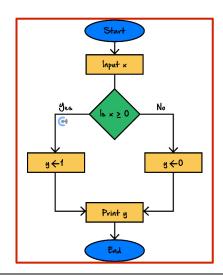



# <u>Sub-Section [2.4.2]</u>: Understanding and Evaluating Algorithms that have Conditional Statements and Represent Hybrid Functions as Algorithms

#### **Question 17**

Using a flowchart, describe an algorithm of the following hybrid function.

$$f(x) = \begin{cases} 3x - 5 & x \ge 0 \\ x - 1 & x < 0 \end{cases}$$




### **Question 18**



Using a flowchart, describe an algorithm of the following hybrid function.

$$f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$





| <b>Question 1</b> |
|-------------------|
|-------------------|



Turn the following function into an algorithm.

$$f(x) = \begin{cases} x^2 & x \ge 1\\ -2x + 1 & x < 1 \end{cases}$$

Step 1: Input x

Step 2: **If** x>=1, **then** *y←x^2* 

else *y←-2x+1* 

Step 3: Print *y.* 

### **Question 20**



Turn the following function into an algorithm.

$$f(x) = \max\{n \in \mathbb{R} | n \le x\}$$

Step 1: input *x* 

Step 2:  $y \leftarrow max\{n \in \mathbb{R} | n \le x\}$ 

Step 3: print y.





## Sub-Section [2.4.3]: Understand and Evaluate Algorithms with Loops

| Question 21                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check whether the following algorithm has any problems. If there is a problem, state the problem; if there is no problem, give the final output of the algorithm. |
| Step 1: $A \leftarrow 30$<br>Step 2: $A \leftarrow 3A - 20$<br>Step 3: Repeat 2 while $A > 65$ .                                                                  |
|                                                                                                                                                                   |
| It goes on infinitely. The condition of the loop is ALWAYS met.                                                                                                   |
|                                                                                                                                                                   |
|                                                                                                                                                                   |

| Space for Personal Notes |
|--------------------------|
| Space for Personal Note: |



| Question 22                                                                 |                             |  |
|-----------------------------------------------------------------------------|-----------------------------|--|
| Evaluate the following algorithm:                                           |                             |  |
| for a from 1 to 10  if a = even, then print "yes"  else print "no" end for. |                             |  |
|                                                                             | no yes no yes no yes no yes |  |
|                                                                             |                             |  |



Check whether the following algorithm has any problems. If there is a problem, state the problem; if there is no problem, give the final output of the algorithm.

Step 1:  $A \leftarrow 60$ Step 2:  $A \leftarrow 2A - 50$ Step 3: Repeat 2 while  $A \le 130$ .

A = 210



| Que | stion | 24 |
|-----|-------|----|
| Vuc |       | _  |



Evaluate the following output:

$$a \leftarrow 5$$

$$b \leftarrow 10$$
if  $a - b < 5$ 

$$a \leftarrow a - 5$$

$$b \leftarrow b - 10$$
end if
print  $a, b$ .

$$a = 0, b = 0.$$





## Sub-Section [2.4.4]: Write and Evaluate Functions using Pseudocode

| Question 25                                          |   |
|------------------------------------------------------|---|
| $A \leftarrow [\ ]$                                  |   |
| for <i>n</i> from 1 to 5                             |   |
| append $n$ to $A$ .                                  |   |
| if $n = 1$ , then                                    |   |
| return                                               |   |
| else                                                 |   |
| $A = \sqrt{n^2 + A[n-1]}$                            |   |
| if $A = integer$                                     |   |
| print " $A[n-1]$ , $n$ , $A$ is a perfect triangle." |   |
| end for.                                             |   |
|                                                      |   |
|                                                      | _ |
|                                                      |   |
|                                                      | _ |
|                                                      |   |
|                                                      | _ |
| 3, 4, 5 is a perfect triangle.                       |   |
|                                                      | - |
|                                                      |   |
|                                                      | _ |
|                                                      |   |
|                                                      | _ |
|                                                      |   |
|                                                      | _ |
|                                                      |   |
|                                                      |   |





 ${f a.}$  Roger decides to invest \$1000 at an interest rate of 10% compounded monthly. Construct an algorithm that computes the number of years needed for Roger's investment to double.

Step 1:  $\tau \leftarrow 1000$ , rate  $\leftarrow 10$ ,  $T \leftarrow 0$ Step 2:  $\tau \leftarrow \tau \times \left(1 + \frac{0.1}{12}\right)^{12}$ ,  $T \leftarrow T + 1$ Step 3: repeat 2 while  $\tau \leq 2000$ . Step 4: print T.

**b.** Jacob decides to invest \$500 at an interest rate of 15% compounded annually. Construct an algorithm that computes the number of years needed for Jacob's investment to increase by 50%.

Step 1:  $\tau \leftarrow 500$ , rate  $\leftarrow 0.15$ ,  $T \leftarrow 0$ Step 2:  $\tau \leftarrow \tau \times (1 + \text{rate})^1$ ,  $T \leftarrow T + 1$ Step 3: repeat 2 while  $\tau \leq 750$ . Step 4: print T.





Using pseudocode, write an algorithm to find all the primes less or equal to 100.

```
Prime 1^{st} \leftarrow [1] plistless= 1

For number from 2 to 100

check \leftarrow 0
For index from 1 to plistless
if number / prime list [index] = int,
check \leftarrow check + 1
else
return
end for.
if check = 0
append number to prime list.
<math display="block">plistless \leftarrow plistless + 1
end for.
print "primelist"
```

### **Question 28**



Using pseudocode, construct an algorithm for the following:

Find the shortest distance between any 2 different coordinates from the list of coordinates.

$$Y \text{ coord} = [1, 35, 5, 41, 5]$$
  
 $X \text{ coord} = [123, 2, 74, 213, 2]$ 

```
Mindist = 300 [or any high enough initial number]
for a from 1 to 5

for b from 1 to 5

if a = b,
break
else
distance = \sqrt{(x[a] - x[b])^2 + (y[a] - y[b])^2}
if distance \leq mindist
mindist \leftarrow distance
end for.
end for.
print min dist.
```



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

## VCE Specialist Mathematics ½

## Free 1-on-1 Consults

### What Are 1-on-1 Consults?

- **Who Runs Them?** Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next.:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

# G

## **Booking Link**

bit.ly/contour-specialist-consult-2025

