

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Logic & Algorithms I [2.4]

Homework

Homework Outline:

Compulsory Questions	Pg 2- Pg 14
Supplementary Questions	Pg 17- Pg 26

Section A: Compulsory Questions

<u>Sub-Section [2.4.1]</u>: Write and Understand Basic Algorithms

Question 1	
Construct an algorithm that triples any input given.	
Question 2	
Construct an algorithm that halves any input given and adds 1.	
Space for Personal Notes	

Question 3	
Construct an algorithm that subtracts 5 from an input and then multiplies by 3.	
	
Space for Personal Notes	

<u>Sub-Section [2.4.2]</u>: Understanding and Evaluating Algorithms that have Conditional Statements and Represent Hybrid Functions as Algorithms

Ouestion	4

a. Turn the following function into an algorithm.

$$f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

b.	Evaluate	the	final	output:

$$a \leftarrow 1$$

 $b \leftarrow 1$

if
$$a + b < 7$$

$$b \leftarrow b - 2$$

$$a \leftarrow a + 3$$
.

end if

print a, b.

Question 5 Tech-Active.			
Following is an algorithm for calculating the Australian tax.			
Step 1: Input income.			
Step 2a: If income ≤ 18200 , then tax $\leftarrow 0$.			
Step 2b: Else If income \leq 37000, then tax \leftarrow 0.19 \times income $-$ 3458.			
Step 2c: Else If income \leq 90000, then tax \leftarrow 0.325 \times income $-$ 8453.			
Step 2d: Else If income \leq 180000, then tax \leftarrow 0.37 \times income $-$ 12503.			
Step 2e: Else If $tax \leftarrow 0.45 \times income - 26903$.			
Step 3: Print tax.			
a. Calculate tax for 200000.			
			
b. Calculate tax for 45888.			

c. Calculate tax for 90001.

Question 6

a. Using a flowchart, describe an algorithm of the following hybrid function.

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \\ \frac{1}{2} & x = 0 \end{cases}$$

CONTOUREDUCATION

b.	b. Write an algorithm for the following hybrid function.			
	$f(x) = \begin{cases} 1 & x > 3 \\ 0 & x = 3 \\ -1 & x < 3 \end{cases}$			
	(-1 x < 3			

Sub-Section [2.4.3]: Understand and Evaluate Algorithms with Loops

Question 7			
Check whether the following algorithm has any problems. If there is a problem, state the problem; if there is no problem, give the final output of the algorithm.			
Step 1: $A \leftarrow 60$			
Step 2: $A \leftarrow 2A - 50$			
Step 3: Repeat 2 while $A > 60$.			

Question 8	
Evaluate the final output.	
$a \leftarrow 1$	
$b \leftarrow 1$	
while $a + b < 7$ $b \leftarrow b - 2$	
$a \leftarrow a + 3$.	
end while print a, b .	
print a, b .	

Space for Personal Notes	

Qu	nestion 9	
a.	Evaluate the final output:	
	$c \leftarrow 0$ for a from 1 to 2	
	for b from 1 to 2	
	$c \leftarrow c - ab$	
	end for	
	end for	
	print c.	
b.	Construct an algorithm that outputs the largest multiple of 5 that is less than or equal to 100.	

Sub-Section [2.4.4]: Write and Evaluate Functions using Pseudocode

Question 10			
Using pseudocode, define a function for finding each of the following:			
a. Finding the area of the triangle given base and height.			
b. Finding the surface area of a sphere given radius.			
c. Define a function for modulus.			

Question 11
Evaluate the following algorithm:
a. $A \leftarrow [\]$ for n from 1 to 6 if $n = \text{even then}$ append 1 to A . else append 0 to A .
b. $A \leftarrow [\]$ for n from 1 to 5 $B \leftarrow 2n + 1$ append B to A .

$A \leftarrow [1, 1]$ for n from 1 to 5 $x \leftarrow A[n] + A[n+1]$ append x to A .

Question 12

Using pseudocode, construct an algorithm for the following:

NOTE: Cannot multiply numbers by themselves.

a. Find the biggest possible product from any 2 numbers from the list = (23, 5, 2, 56, 34).

b.	Find the smallest possible sum of 2 numbers from the same list as part a .	
		_
		-
		_
		-
		-
		-
		_
		-
		-
Sp	ace for Personal Notes	

Sub-Section: Final Boss

Question 13			
Consider the sequence 1, 4, 7, 10, 13, 16, 193 $(n-1) + 1$.			
Using pseudocode, write an algorithm for:			
a. Calculate the sum of the even terms in the sequence up to the n^{th} term.			
b. Calculate the product of the odd terms in the sequence up to the n^{th} term.			

c. Construct a table of values to demonstrate each algorithm when $n = 5$.	
Space for Personal Notes	

Section B: Supplementary Questions

SM12 [2.4] - Logic & Algorithms I - Homework

<u>Sub-Section [2.4.1]</u>: Write and Understand Basic Algorithms

Question 14)			
Construct an algorithm that multiplies any input given by 10.				
Question 15				
Construct an algorithm that adds any input given by 5.				
Space for Personal Notes				

onstruct an algorithm that subtracts any input given by 5 and multiplies by 2.	Question 16			
	Construct an al	orithm that subtracts any input given b	y 5 and multiplies by 2.	
pace for Personal Notes				
pace for Personal Notes				
pace for Personal Notes				
pace for Personal Notes				
	ppace for r cr.	ondi Notes		

<u>Sub-Section [2.4.2]</u>: Understanding and Evaluating Algorithms that have Conditional Statements and Represent Hybrid Functions as Algorithms

Question 17

Using a flowchart, describe an algorithm of the following hybrid function.

$$f(x) = \begin{cases} 3x - 5 & x \ge 0 \\ x - 1 & x < 0 \end{cases}$$

Question 18

Using a flowchart, describe an algorithm of the following hybrid function.

$$f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

O	nestion	19

Turn the following function into an algorithm.

$$f(x) = \begin{cases} x^2 & x \ge 1\\ -2x + 1 & x < 1 \end{cases}$$

Question 20

Turn the following function into an algorithm.

$$f(x)=max\{n\in\mathbb{R}|n\leq x\}$$

Sub-Section [2.4.3]: Understand and Evaluate Algorithms with Loops

Question 21
Check whether the following algorithm has any problems. If there is a problem, state the problem; if there is no problem, give the final output of the algorithm.
Step 1: $A \leftarrow 30$ Step 2: $A \leftarrow 3A - 20$ Step 3: Repeat 2 while $A > 65$.

Question 22)
Evaluate the following algorithm:	
for a from 1 to 10	
if $a = \text{even}$, then print "yes"	
else	
print "no" end for.	

Question 23

Check whether the following algorithm has any problems. If there is a problem, state the problem; if there is no problem, give the final output of the algorithm.

Step 1: $A \leftarrow 60$ Step 2: $A \leftarrow 2A - 50$		
Step 3: Repeat 2 while $A \le 130$.		

Question	24
Question	

Evaluate the following output:

$$a \leftarrow 5$$

$$b \leftarrow 10$$
if $a - b < 5$

$$a \leftarrow a - 5$$

$$b \leftarrow b - 10$$
end if
print a, b .

Space	for	Personal	Notes

Sub-Section [2.4.4]: Write and Evaluate Functions using Pseudocode

Question 25	Í
$A \leftarrow [\]$	
for n from 1 to 5	
append n to A .	
if n = 1, then	
return	
else	
$A = \sqrt{n^2 + A[n-1]}$	
if $A = integer$	
print " $A[n-1]$, n , A is a perfect triangle."	
end for.	
- 	

Question 26		
a.	Roger decides to invest \$1000 at an interest rate of 10% compounded monthly. Construct an algorithm that computes the number of years needed for Roger's investment to double.	
b.	Jacob decides to invest \$500 at an interest rate of 15% compounded annually. Construct an algorithm that computes the number of years needed for Jacob's investment to increase by 50%.	
Sp	pace for Personal Notes	

Question 27	الراران المراز ا
Using pseudocode, write an algorithm to find all the primes less of	or equal to 100.

Question	28

Using pseudocode, construct an algorithm for the following:

Find the shortest distance between any 2 different coordinates from the list of coordinates.

$$Y \text{ coord} = [1, 35, 5, 41, 5]$$

 $X \text{ coord} = [123, 2, 74, 213, 2]$

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after school weekdays, and all day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next. :)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

6

Booking Link

bit.ly/contour-specialist-consult-2025

