CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs Exam Skills [2.3]

Workbook

Outline:

Pg 34-39

Recap Pg 2-17

Warmup Pg 18-21

<u>Exam Skills</u> Pg 22-33

- Solve Problems using AM-GM Inequalities
- Solve Arithmetic and Geometric Series Proofs
- Prove Divisibility with Induction

Exam 1

<u>Exam 2</u> Pg 40-41

Learning Objectives:

- SM12 [2.3.1] Solve problems using AM-GM inequalities
- SM12 [2.3.2] Solve Arithmetic and Geometric Series Proofs
- SM12 [2.3.3] Prove divisibility with induction

Question 1

Write a conditional statement for the following:

Doing strength training grows your muscles.

If you do strength training, your muscles will get bigger.

Proving Conditional Statements

- 1. Direct Proof.
- 2. Proof by Contrapositive.
- 3. Proof by Contradiction.

REMINDER

- From last week, we found that an even number can be written in the form:
 - 2k, where $k \in \mathbb{Z}$.
- > An odd number can be written in the form:

2k+1, where $k \in \mathbb{Z}$.

If a number is divisible by 3, then it can be written in the form:

3k, where k∈Z.

CONTOUREDUCATION

If a number is not divisible by 3, then it can be written in the form:

3k+1 or 3k+2, where $k \in \mathbb{Z}$.

For proofs involving divisibility, we often need to split into ______

Method 1: Direct Proof

- The simplest method of proof. These are the proofs we have been working on in [2.1].
- Here, we are not altering the statement we need to prove.

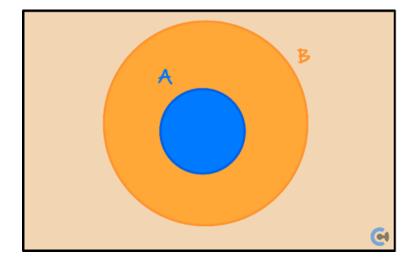
Question 2

Prove that for all integers m and n, if m is divisible by 5 and n is divisible by 2, then 10m + 3n is even.

Solution: Let m=5k and n=2j for $k,j\in\mathbb{Z}$. Therefore, 10m+2n=50k+4j=2(25k+2j)=2p where $p=25k+2j\in\mathbb{Z}$.

What is a contrapositive statement?

Contrapositive Statement



A⇒B Means that A is inside B

¬B⇒¬A

As if B does not occur, A can't either

(Contrapositive Statement of $A \Rightarrow B$) is $\neg B \Rightarrow \neg A$

NOTE: Swap the order and negate the statements.

Question 3

Write down the contrapositive of the following statement:

If all the sides of a triangle have equal length, then the triangle is equilateral.

If a triangle is not equilateral, not all of its sides have equal length.

CONTOUREDUCATION

Instead of proving $A \Rightarrow B$, we can prove its contrapositive $\neg B \Rightarrow \neg A$.

Prove a contrapositive statement instead.

- Considered to be an ____indirect proof_____, as the original statement is altered.
- > Steps:
 - **1.** Set up the contrapositive statement.
 - **2.** Prove the contrapositive statement to be true.
 - 3. Conclude by saying "As contrapositive is true, the original statement is true."

Question 4

Prove the following conditional statement using contrapositive:

Let
$$x \in R$$
. If x is irrational, then $\sqrt{x + \frac{1}{5}}$ is irrational.

Solution: We prove the contrapositive statement "If $\sqrt{x+1/5}$ is rational, then x is rational." Indeed, since $\sqrt{x+1/5}$ is rational, $\sqrt{x+1/5} = p/q$ for $p,q \in \mathbb{Z}$ and $q \neq 0$. Solving for x, we find that $x = (p/q)^2 - 1/5 = (5p^2 - q^2)/5q^2 = r/s$ where $r = 5p^2 - q^2 \in \mathbb{Z}$, $s = 5q^2 \in \mathbb{Z}$ and $s \neq 0$. Hence, as the contrapositive statement holds, the original statement is also holds.

What is a contradicting statement?

Contradicting Statement

(Contradicting Statement of $A \Rightarrow B$) is $A \Rightarrow \neg B$

Negate the <u>conclusion</u>

Question 5

State the contradicting statement of the following:

If x is rational, then x^2 is rational.

If x is rational, then x^2 is irrational.

Method 3: Proof by Contradiction (Indirect Proof)

To Prove $A \Rightarrow B$

Assume $A \Rightarrow \neg B$ is true

And show that the assumption is FALSE.

- > Steps:
 - 1. First, assume that the contradicting statement is true.
 - 2. Show that the assumption has a contradiction, and is hence false.
 - 3. Conclude by saying "Since the contradicting statement is false, the original statement is true."
- ➤ Considered to be an _______ as the original statement is altered.

Active Recall: De Morgan's Law

$$\neg (A \land B) = | \neg (A \land B) = \neg A \lor \neg B$$

$$\neg (A \land B) = \qquad \neg (A \land B) = \neg A \lor \neg B$$

$$\neg (A \lor B) = \qquad \neg (A \lor B) = \neg A \land \neg B$$

Ouestion 6

Let $a, b \in R$. Prove that if a + b > 150, then a > 75 or b > 75.

STEP 1. Set up the contradicting statement (Assume opposite is true).

It's going to be, AND due to De Morgan's law $(A \cup B)' = A' n B'$.

STEP 2. Prove it to be FALSE → Original statement is TRUE.

Solution: Assume for contradiction that a + b > 150 but $a \le 75$ and $b \le 75$. Then $a + b \le 150$, which is a contradiction. Therefore the original statement holds.

Solution: Alternatively, a > 150 - b so that 75 > a > 150 - b implies that b > 75, which contradicts the fact that $b \leq 75$. Therefore the original statement holds.

Key Takeaways

- Direct proof involves proving without changing the conditional statement.
- ✓ The contrapositive of a statement $A \to B$ is given by $\neg B \to \neg A$.
- Proof by contrapositive involves proving the contrapositive of the conditional statement instead.
- Proof by contradiction requires first assuming that the contradicting statement is true, then showing contradiction.

Converse Statements

Definition: Conditional statement that flows in the opposite direction.

(Converse Statement of $A \Rightarrow B$) is $B \Rightarrow A$

Question 7

For the following statement, write down the converse statement, and conclude whether the converse is true:

If x is divisible by 2 and 5, then it is divisible by 10.

If x is divisible by 10, then its divisible by 2 and 5: TRUE

Equivalent Statements (Biconditional)

▶ It is a biconditional statement where if the original is ______ proven to be true _____, its converse is _____ ALWAYS true ____.

$$A \Rightarrow B$$
 and $B \Rightarrow A$

$$A \Leftrightarrow B$$

A is true, if and only if B

- In description, *B* is true _____ If and Only If _____ *A* is true
- To prove equivalent statements, we prove each direction separately.

NOTE: For if and only if (equivalent statement), we must prove both converse statements.

Question 8

Let n be an integer. Prove that n is odd, if and only if n^2 is odd.

```
=> \text{ If n is odd, } n^2 \text{ is odd} \text{Let } n \in \mathbb{Z}, \text{ where } n \geq 0. \text{Suppose } n \text{ is odd.} \text{By definition, } n = 2k+1 \text{ for some } k \in \mathbb{Z}. \text{Then } n^2 = (2k+1)^2 = 4k^2+4k+1 = 2(2k^2+2k)+1 \text{Also, } (2k^2+2k) \in \mathbb{Z} \text{ since } k \in \mathbb{Z}. \text{Thus, } n^2 \text{ is odd by definition.}
```

```
 <= \text{if } n^2 \text{ odd, n is odd (prove by contrapositive)}   \text{Proof: Let } n \in \mathbb{Z}, \text{ where } n \geq 0.   (\Leftarrow): \text{ Suppose } n \text{ is even.}   \text{By definition, } n = 2k \text{ for some } k \in \mathbb{Z}.   \text{Then } n^2   = (2k)^2   = 4k^2   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = (2k)^2   = 4k^2   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = (2k)^2   = 4k^2   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = (2k)^2   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   = 2(2k^2)   \sim P: n \leftarrow \infty   \sim Q: n^2 \text{ odd }   \sim Q: n^
```

Key Takeaways

- ✓ The converse statement of $A \rightarrow B$ is given by $B \rightarrow A$.
- An equivalent statement is when a statement and its converse both are proved to be true.
- If and only if stands for an equivalent statement.

CONTOUREDUCATION

Universal Quantifiers

Universal quantifier is a way to represent all members of a given set.

For all real numbers x, x^2 is never negative.

➤ Notation: ∀ (Universal Quantifier) ______"For All"

$$\forall x \in R, x^2 \geq 0$$

Question 9

Rewrite the following statement using the universal quantifier:

For all integers n, $n^2 - 4n$ is an integer.

Solution: $\forall n \in \mathbb{Z}, n^2 - 4n \in \mathbb{Z}$

Existence Quantifiers

- Existence Quantifier
- ______ is a way to represent certain members of a given set.

There exists an integer such that $x^2 - x - 12 = 0$.

$$\exists x \in \mathbb{Z}, x^2 - x - 12 = 0.$$

Question 10

Rewrite the following statement using the existence quantifier.

There exists a positive whole number n such that $2^n = 4$.

Solution: $\exists n \in \mathbb{N}, 2^n = 4$

Negation of Universal and Existence Statements

- They are opposites of each other (with opposite conclusions).
- ¬Universal Statement = Existence Statement with Opposite Conclusion
- And vice versa.

Question 11

Write down the negation for the following statements below.

a. If *n* is a natural number, then n + 1 > n.

$$\neg(\forall n\in N, n+1>n)=\exists n\in N, n\leq n+1$$

b. There exists an integer k such that $k^2 = k + 4$.

$$\neg (\exists k \in Z, k^2 = k + 4) = \forall k \in Z, k^2 \neq k + 4$$

CONTOUREDUCATION

Disproving Universal Statement

- We prove the opposite (negation) existence statement.
- We call this proof by ______
 - Giving a counterexample will be proving an opposite existence statement.

Ouestion 12

Disprove the following statement: For all positive integers m, if m is prime then $m^2 + 4$ is also prime.

Counter example:

Assume m = 2 which is a positive, prime integer.

Then it follows that:

$$m^2 + 4 = (2)^2 + 4$$

= 4 + 4
= 8

However, since 8 is a composite number, not a prime number, this is a contradiction and we have shown the claim to be false by counter example.

NOTE: It is important to understand this concept as it will be used for contrapositive, contradiction method.

NOTE: We simply give ourselves a counter-example to disprove a universal statement.

Disproving Existence Statements

We prove the opposite (negation) ______

NOTE: To disprove their existing statement, you must show the opposite universal statement as true

Question 13

Disprove the following statements:

There exists a real number x, such that $10 + 3x^2 = 3 + x^2$.

Negatin: For all real newton,
$$10+3n^2 \neq 3+n^2$$

$$10+3n^2 \neq 3+n^2 \qquad \text{Then excit a real no}$$

$$2n^2 \neq -7 \qquad \text{such that } 10+3n^2 = 3+n^2$$

$$n^2 \neq -\frac{1}{2} \qquad \text{is a false statem}$$
True

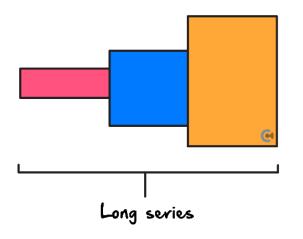
Key Takeaways

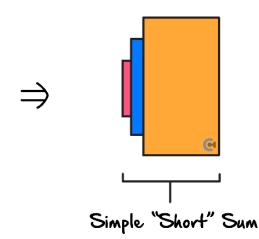
- ✓ There exists a quantifier ∃.
- ✓ For all quantifiers ∀.
- ☑ To prove a there exists statement, simply give an example.
- ☑ To prove for all statements, you must prove for all values.
- ✓ To disprove a there exist statement, prove the opposite for all statements.
- ☑ To disprove a for-all statement, prove the opposite there exist statement.

Telescopic Cancelling

Telescoping series is a series (sum of terms) where all terms cancel out except for the _______
first and last one

The name comes from the visualisation as shown below.





Proofs of telescoping series can be done via _____telescopic cancelling: Shortening the telescope

Question 14

a. Using partial fractions, find the values of a and b such that:

$$\frac{3}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$$

$$a=3 \text{ and } b=-3.$$

b. Hence, prove that:

$$\frac{3}{1 \times 2} + \frac{3}{2 \times 3} + \dots + \frac{3}{n \times (n+1)} = \frac{3n}{n+1}$$

b We use the result from part **a** to expand each term of the series:

$$\frac{3}{1 \cdot 2} + \frac{3}{2 \cdot 3} + \dots + \frac{3}{(n-1)n} + \frac{3}{n(n+1)}$$

$$= \left(\frac{3}{1} - \frac{3}{2}\right) + \left(\frac{3}{2} - \frac{3}{3}\right) + \dots + \left(\frac{3}{n-1} - \frac{3}{n}\right) + \left(\frac{3}{n} - \frac{3}{n+1}\right)$$

$$= \frac{3}{1} + \left(-\frac{3}{2} + \frac{3}{2}\right) + \left(-\frac{3}{3} + \frac{3}{3}\right) + \dots + \left(-\frac{3}{n} + \frac{3}{n}\right) - \frac{3}{n+1}$$
 (regrouping)
$$= 3 - \frac{3}{n+1}$$
 (cancelling)
$$= \frac{3n}{n+1}$$

Proof by Induction

- \blacktriangleright We will be following the given steps:" $\underline{\qquad} TAPE \underline{\qquad}_{"}.$
 - Step T: Test the statement for its first possible value.
 - **Step A:** Assume that the statement is true for n = k.
 - **Step P:** Prove that if the statement holds true for n = k, It also holds true for n = k + 1.
 - Add "By Assumption".
 - Step E: "By the principle of mathematical induction, the statement is true for a set of values."

Question 15

Prove that for all $n \in N$, we have:

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

NOTE: $1 + 2 + \cdots + n$ can be written as:

$$\sum_{i=1}^{n} i$$

: Halan holds

2. Assur PIt) is the

3. Arme P[K+1] is the

4. Explain

Section B: Warmup (15 Marks)

Question 16 (4 marks)

Let $n \in N$. Consider the statement

a. Write down the contrapositive of the statement. (1 mark)

$$7B \Rightarrow 7A$$

niseven then 3ⁿ-1 is not prime

b. Prove that the contrapositive is true. (3 marks)

 $= (3^{k}-1)(3^{k}+1)$ Since $k \in \mathbb{N}$, $3^{k}-1$, $3^{k}+1 > 1$

other than itself and I.

Hence, the contrapositive Statement is true.

Question 17 (3 marks)

Prove that if x is irrational then, $\sqrt{x-3}$ is irrational. Use the contradiction method in your proof.

For contradiction, suppose & is irrational but

JX-3 is ratheral

Then, $\sqrt{2x-3} = \frac{1}{2}$, $p,q \in \mathbb{Z}$ $dq \neq 0$

 $\chi = \rho^2 + 3q^2$

but ρ2+3q2 ∈ Z & q2 ∈ Z & q2+0

i. X is rational.

This is a contradretor, so organal stockers

Question	18	(4	marks	۱
Question	10	(+	marks	,

Prove that the following is true for all positive integers n: n is odd if and only if $n^2 + 4$ is odd.

 $l : n = 2k+1, k \in 2$

Thun, n2+4=(2k+1)2+4

= 4k2+4k+1+4

=2(2k2+2k+2)+1

.. n²+4 is odd, as 2k²+2k+2 ∈ Z.

$B \Rightarrow A : n^2 + 4 is all \Rightarrow n > ale$

Prove instead the contrapositive; that is,

If n is even, then no +4 is even

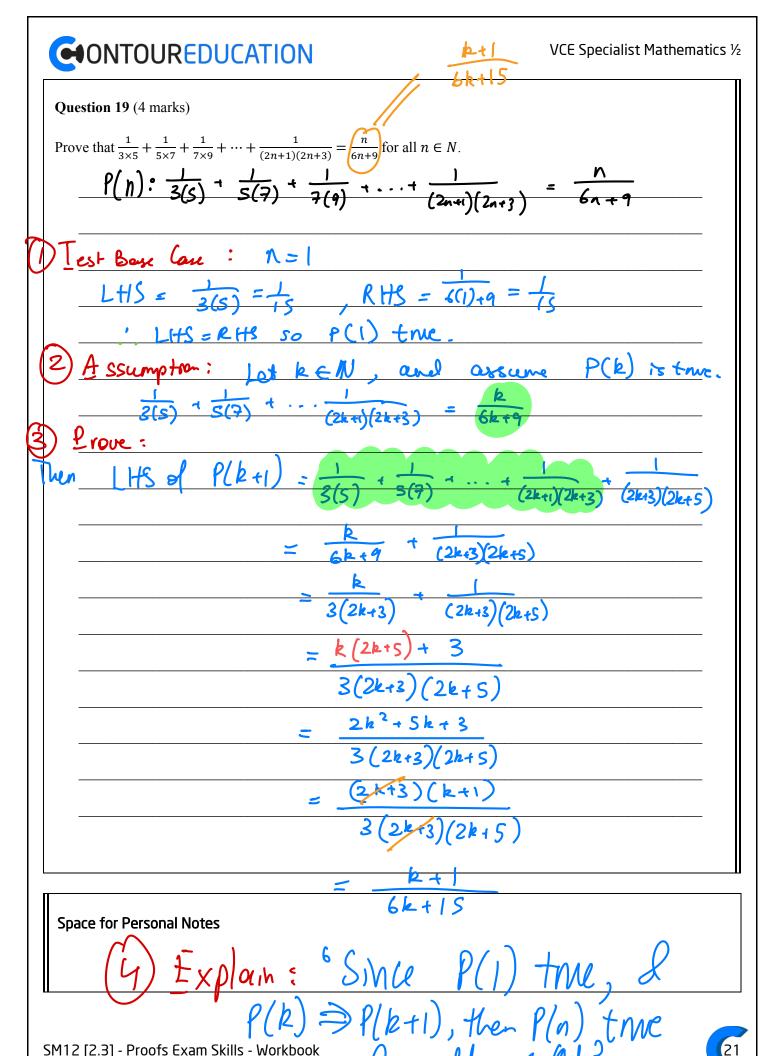
Thun, n2+4 = 4x2+4

 $= 2(2k^{2}+2)$ $= 2p, p = 2k^{2}+2 \in \overline{T}$ $n^{2}+4 : 3 even.$

22) are true, so the

Space for Personal Notes

Original statement is time.



SM12 [2.3] - Proofs Exam Skills - Workbook

Section C: Exam Skills

Sub-Section: Solve Problems Using AM-GM Inequalities

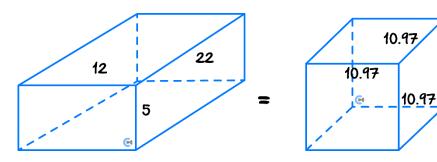
Context: Different Types of Means

- Normally, when we talk about a mean, we are talking about the 'arithmetic mean,' where we add the numbers and divide by the amount of numbers. In a sense, we do repeat addition (multiplication) and then undo that with division.
- There is also a geometric mean, where we multiply the different numbers, then undo repeated multiplication (exponentiation) by rooting the result.

Exploration: AM vs GM

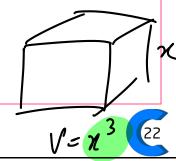
- Consider the numbers a_1 , a_2 , a_3 ... a_n .
 - The arithmetic mean AM = $\frac{a_1 + a_2 + \dots + a_N}{a_1 + a_2 + \dots + a_N}$
 - The geometric mean $GM = \frac{1}{(\alpha_1 \alpha_2, \alpha_3, \alpha_n)}$

<u>Discussion:</u> Interpreting Geometric Mean



Imagine that 3 numbers were the sides of a box. Then, imagine we squished the box into a cube, where the sides are the geometric mean. How are these two things related?

Geometric mean = Average side length of a same-volume cube.



SM12 [2.3] - Proofs Exam Skills - Workbook

Question 20 Walkthrough.

Calculate the arithmetic and geometric mean of 2, 4 and 8.

$$AM = \frac{2+4+8}{3} = \frac{14}{3}$$

$$4M = \left(2\times 4\times 8\right)^{\frac{1}{3}} = \left(64\right)^{\frac{1}{3}}$$

$$= 4$$

Question 21

Evaluate the geometric mean of 2^3 , 3^3 and 5^3 .

$$GM = \left(2^{3} \times 3^{3} \times 5^{3}\right)^{\frac{1}{3}}$$

$$= 2 \times 3 \times 5 = 30$$

Exploration: AM, GM Inequality

- For any collection of non-negative real numbers, $AM \ge GM$.
- This can be proven with a special type of induction but is beyond the content of VCE!

Solve AM - GM Inequalities

- Steps:
 - $\textbf{1.} \ \ \text{Rearrange the inequality into the form of an AM-GM inequality, noting your steps.}$
 - **2.** Rewrite the steps backwards, starting from the AM GM inequality and ending with the original inequality.

Question 22 Walkthrough.

Show that if
$$a, b > 0$$
 then $\frac{a}{b} + \frac{b}{a} \ge 2$.

$$AM = \frac{a/r + ba}{2}$$

$$4M = \sqrt{\frac{9}{r} \cdot \frac{b}{a}}$$

$$\frac{a_{b}^{4}b_{a}^{b}}{2} \geq \sqrt{\frac{a}{b}} \times \frac{b}{a}$$

$$\frac{1}{2}\left(a_{b}^{4} + \frac{b}{a}\right) \geq 1$$

$$\frac{1}{b} + \frac{b}{a} \ge 2$$

So, the statement is true.

Question 23

If xyz = 27, what is the minimum value of x + y + z?

$$4M = (\chi y^2)^{\frac{1}{3}}$$

$$= (27)^{\frac{1}{3}}$$

$$= 3$$

$$\frac{\chi_{4}4^{\frac{2}{3}}}{3} > 3$$

Question 24 Additional Question.

If wxyz = 16, what is the minimum value of w + x + y + z?

$$GM = (wxyz)^{\frac{1}{4}}$$

$$= 16^{\frac{1}{4}}$$

$$= 2$$

$$\frac{AM > GM}{\frac{W+x+y+2}{4}} > 2$$

Sub-Section: Solve Arithmetic and Geometric Series Proofs

Context

We saw how we can prove arithmetic series results using the general formula, but we can also prove these with results through induction!

<u>Exploration</u>: Proving the General Arithmetic Series Formula using Induction

$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$

> Test:
$$S_1 = \frac{1}{2}(2q_1 + 0) = q_1$$
. Base Con True.

Assume:
$$S_k = \frac{k}{2} \left(2\alpha_1 + (k-1) \alpha \right)$$

Prove: We need to prove
$$9, 492 + 93 + \dots + 9k + 9k + 9k = \frac{k+1}{2}(2a_1 + kd)$$

LHS =
$$a_{1} + a_{2} + ... + a_{k} + a_{k+1}$$

= $\frac{k}{2}(2a_{1} + (k-1)d) + a_{k+1}$, by assumption of $P(k)$
= $\frac{k}{2}(2a_{1} + (k-1)d) + a_{1} + kd$
= $ka_{1} + \frac{k^{2}d}{2} - \frac{kd}{2} + a_{1} + kd$
= $a_{1}(k+1) + kd(\frac{k_{2} - \frac{1}{2} + 1}{2})$
= $a_{1}(k+1) + \frac{kd}{2}(k+1)$
= $\frac{k+1}{2}(2a_{1} + kd) = R(+8)$

Explain: Hence, we have proven the arithmetic series formula by induction.

Now, let's look at particular examples!

Question 25 Walkthrough.

Using induction, prove that $1 + 3 + 5 + \cdots + (2n - 1) = n^2$ for all $n \in \mathbb{N}$.

Test: Test base LHS =
$$I = I$$
 : $P(I)$ True case, $n=1$ $PHS = I^2 = I$

a Assume: Assume for KEN, that P(k) time, that is

Prove: LHS of
$$P(k+1) = 1+3+5+...+(2k-1)+(2k+1)$$

= $k^2 + 2k+1$ (by assumption of $P(k)$)

= $(k+1)^2$

= $k+1$

Explain: 6 Since P(1) time, & $P(k) \Rightarrow P(k+1)$, then P(n) time for all $n \in \mathbb{N}$ by inclustren.

LHS of P(eti) = (b+1)(k+2)

Question 26

Prove by induction that $2 + 4 + 6 \dots + 2n = n(n + 1)$ for all $n \in \mathbb{N}$.

:.
$$P(1)$$
 true $l P(k) \Rightarrow P(k+1)$

CONTOUREDUCATION

Question 27 Additional Question.

Prove by induction that $3 + 9 + 27 + \dots + 3^n = \frac{3(3^n - 1)}{2}$ for all $n \in \mathbb{N}$.

LHS =
$$\frac{3}{2}$$
, RHS = $\frac{3(3'-1)}{2}$ = $\frac{3(2)}{2}$ = 3 ... LHS = RHS

• Assume for
$$k \in N$$
 that $P(k)$ is time, that is $3+9+27+...+3^k = \frac{3(3^k-1)}{3}$

Then, LHS of
$$P(k+1) = 3+9+27+...+3k+3k+1$$

$$= 3(3^{k}-1) + 3^{k}+1$$

$$= 3^{k+1}-3^{k}+2(3^{k+1})$$

$$= 3^{k+1} - 3 + 2(3^{k+1})$$

$$= \frac{3(3^{k+1})-3}{2}$$

:
$$P(I)$$
 true & $P(k) \Rightarrow P(k+I)$, $P(n)$ true for all $n \in \mathbb{N}$ by $POMI$.

Sub-Section: Prove Divisibility with Induction

We've learnt to prove divisibility directly. What about through induction?

Proving that $a^n + b$ is Divisible by k using Induction

- 1. Let $\underline{a^n + b} = \underline{k m}$ where m is a natural number.
- **2.** Rearrange so that $a^n = \underline{\qquad km b}$.
- 3. Replace a^n with _____ km b^n when proving.

Question 28 Walkthrough.

Prove that $7^n + 5$ is divisible by 6 for all $n \in N$.

Let
$$P(n): 7^n + 5 = 6m$$
, $m \in \mathbb{N}$

(3) Then
$$7^{k+1} + 5 = 7(7^k) + 5$$

$$= 7(6m-5) + 5 \qquad (by assumption)$$

$$=42m-35+5$$

$$= 6(7m-5)$$

$$=61$$
, $l=7m-5 \in \mathbb{N}$

9 Since P(1) Time of P(k) => P(k+1)

ther P(1) time for all
$$n \in \mathbb{N}$$
.

CONTOUREDUCATION

Question 29

Prove that $11^n - 1$ is divisible by 10 for all $n \in N$.

: P(1) True

Assume fe $k \in \mathbb{N}$ that P(k) time, that is, |R| = 10 m, |R| = 10 m

P(1) true
$$L P(k) \Rightarrow P(k+1)$$
, so $P(n)$ true for all $n \in \mathbb{N}$ by the principles of mathematical inclusion.

ONTOUREDUCATION

Question 30 Additional Question.

Prove that $7^n - 3^n$ is divisible by 4 for all $n \in N$.

: P(1) True

· Assume for ken that P(k) is true. That is, 7 -3 = 4m, meN

$$= 7(7^k) - 3(3^k)$$

$$= 3(7^{k}) - 3(3^{k}) + 4(7^{k})$$

$$=3(7^{k}-3^{k})+4(7^{k})$$

=
$$3(4m) + 4(7k)$$
 by assumption of $P(k)$

i. P(n) true for all neW by POMI.

Section D: Exam 1 (24 Marks)

Question 31 (4 marks)

Prove that $3^{2n} - 1$ is divisible by 8 for all $n \in N$.

i. The result is true by POMI

Question 32 (3 marks)

If x and y are positive real numbers, determine the minimum value of:

$$\frac{(2x+3y)\left(\frac{8}{x}+\frac{3}{y}\right)}{\left(\frac{8}{x}+\frac{3}{y}\right)} = \frac{1}{16}+\frac{9}{14}+\frac{6x}{y}+\frac{24}{y}$$

Then using AM-GM inequality:
$$\frac{6\times}{y}$$
, $\frac{24y}{x}$ $\geq \sqrt{\frac{6x}{y}}$, $\frac{24y}{x}$

$$\frac{1}{2}\left(\frac{5x}{y} + \frac{2yy}{x}\right) \ge \sqrt{14y}$$

$$\frac{5x}{y} + \frac{2yy}{x} \ge 24$$

$$\frac{1.25 + 6x + 24y}{y} + \frac{24y}{x} > 25 + 2y = 49$$

Space for Personal Notes

i. Min Value 13 49.

Question 33 (3 marks)

Prove by contradiction that if p and q are positive integers, then $\frac{2p}{q} + \frac{2q}{p} \ge 4$.

For contradiction, assume that $\frac{2p}{2} + \frac{2q}{p} < 4$, $p, q \in N$

then $\frac{2p^2+2q^2}{pq} < \frac{q}{q}$

2p2+2q2 < 4pg

p2-pg+g2<0

(P-9)2<0

Which is a contradiction since P-q & Z

L the square of an integer is > 0

:. The original Statement is true.

Question 34 (5 marks)

Prove using induction that $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$.

Base Case: If n = 1:

LHS =
$$1^2 = 1$$

RHS = $\frac{1}{3}(2 \cdot 1 - 1)(2 \cdot 1 + 1) = \frac{1}{3} \cdot 1 \cdot 3 = 1$.

The result holds for n = 1.

Assume for
$$k \in N$$
 that the result is time.
 $1^2 + 3^2 + ... + (2k-1)^2 = \frac{1}{3}k(2k-1)(2k+1)$

$$= \frac{3k(2k-1)(2k+1)}{(2k+1)^2}$$

$$=\frac{1}{3}(2k+1)(k(2k-1)+3(2k+1))$$

$$=\frac{1}{3}(2k+1)(2k+3)$$

Space for Personal Notes
$$= \frac{1}{3}(k+1)(2k+1)(2k+3)$$
$$= RHS$$

Conclusion: If the result holds for $n = k \in \mathbb{N}$, it also holds for n = k + 1. Since the result holds for n = 1, it must hold for all $n \in \mathbb{N}$ by the principal of mathematical induction.

Question 35 (4 marks)

Consider the sequence $t_n = \frac{3}{7}(8^n - 1), n \in \mathbb{N}$.

Prove by induction that every term of this sequence is an integer.

- Box Cose:
$$t_1 = \frac{3}{7}(8^1 - 1) = \frac{3}{7}(7) = 3 \in \mathbb{Z}$$

... Box Cose 7rue

$$\frac{3}{7}(8^{k}-1) = m, m \in \mathbb{Z}$$

$$=\frac{3}{7}(8(8^{k})-1)$$

=
$$\frac{3}{7}$$
 (8($\frac{7m}{3}$ +1)-1) (by assumption

$$=\frac{3}{7}\left(\frac{56m}{3}+7\right)$$

Space for Personal Notes

: Result is true for n=k+1. So true for all n & N by POMI.

Question 36 (5 marks)

Vx the result:

 $n^2 > 2n + 1$

for 1 > 5

$$2^{5} = 32$$
, $5^{2} = 25$

Prove using induction that $2^n > n^2$ for all integers $n \ge 5$.

Since 3272S, then base case is time

2 Assume for n=k, $k \in \mathbb{N}$, that $2^k > k^2$

$$=2(2^k)$$

$$=2^{k}+2^{k}$$

$$> k^2 + k^2$$

$$=(kt)^2$$

CONTOUREDUCATION

Section E: Exam 2 (5 Marks)

Question 37 (1 mark)

Which of the following best demonstrates a proof by contradiction?

- **A.** Assume a statement is false and show that this leads to a logical inconsistency.
- **B.** Use specific examples to verify the truth of a statement.
- C. Start from a known fact and logically deduce the conclusion.
- **D.** Test a hypothesis by substituting values into an equation.

Question 38 (1 mark)

A student claims: "The sum of any two odd numbers is even." To prove this, which of the following approaches would work?

- **A.** Test the statement with one example, such as 3 + 5.
- **B.** Test the statement with multiple examples, such as 1 + 3 and 7 + 9.
- C. Represent two odd numbers as 2n + 1 and 2m + 1, then show their sum is even.
- **D.** Assume the statement is false and attempt to find a counter-example.

Question 39 (1 mark)

Which of the following is a valid proof for the statement: "If a number is divisible by 4, then it is even"?

- **A.** Check if the statement is true for one number divisible by 4.
- **B.** Write any number divisible by 4 as 4n, and note that 4n is also divisible by 2.
- C. Write the number as 4n + 1 and verify it is divisible by 4.
- **D.** None of the above.

Question 40 (1 mark)

A rectangle has a fixed perimeter of 20 units. Which of the following values for the side lengths maximises its area?

- **A.** Side lengths 4 and 6.
- AM-GM: VLW < 1+W
- **B.** Side lengths 3 and 7.

· JLW & S

C. Side lengths 5 and 5.

4w ≤ 25

D. Side lengths 7 and 4.

: Max Area = 25 Weed dimension 5 & 5

Question 41 (1 mark)

Consider the statement: "If a number is divisible by 6, then it is divisible by 3." What is the contrapositive of this statement?

- **A.** If a number is divisible by 3, then it is not divisible by 6.
- **B.** If a number is not divisible by 3, then it is not divisible by 6.
- $7B \Rightarrow 7A$
- **C.** If a number is not divisible by 6, then it is not divisible by 3.
- **D.** If a number is divisible by 6, then it is not divisible by 3.

Contour Check

Key Takeaways

- The geometric mean of a_1 , a_2 , a_3 is _______ ($a_1a_2a_3$)^{1/3} _______.
- When dealing with AM and GM, __ AM __ ≥ __ GM ____.

Learning Objective: [2.3.2] - Solve Arithmetic and Geometric Series Proofs

Key Takeaways

Geometric and arithmetic series results can be proven using _____ induction _____.

Learning Objective: [2.3.3] - Prove Divisibility with Induction

Key Takeaways

To prove $a^n + b$ is divisible by something, we have to rearrange for a^n

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

