CONTOUREDUCATION

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs Exam Skills [2.3]

Workbook

Outline:

Pg 34-39

Recap Pg 2-17

Warmup Pg 18-21

Exam Skills Pg 22-33

- Solve Problems using AM-GM Inequalities
- Solve Arithmetic and Geometric Series Proofs
- Prove Divisibility with Induction

Exam 1

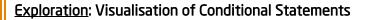
<u>Exam 2</u> Pg 40-41

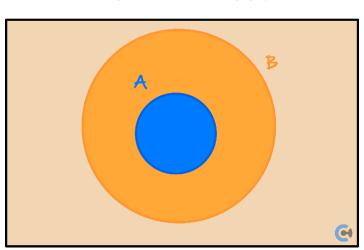
Learning Objectives:

- SM12 [2.3.1] Solve problems using AM-GM inequalities
- SM12 [2.3.2] Solve Arithmetic and Geometric Series Proofs
- SM12 [2.3.3] Prove divisibility with induction

Section A: Recap

If you were here last week skip to Section B Warmup test.





If A, then B.

Definition Definition

Conditional Statements

- Conditional Statement: ________.
- Note: Notation for "implies": ⇒

"Hypothesis \Rightarrow Conclusion"

NOTE: Order Matters!

Space for Personal Notes

SM12 [2.3] - Proofs Exam Skills - Workbook

Question 1

Write a conditional statement for the following:

Doing strength training grows your muscles.

Proving Conditional Statements

- 1. Direct Proof.
- 2. Proof by Contrapositive.
- 3. Proof by Contradiction.

REMINDER

- From last week, we found that an even number can be written in the form:
- An odd number can be written in the form:
- If a number is divisible by 3, then it can be written in the form:

CONTOUREDUCATION

If a number is not divisible by 3, then it can be written in the form:

For proofs involving divisibility, we often need to split into _______.

Method 1: Direct Proof

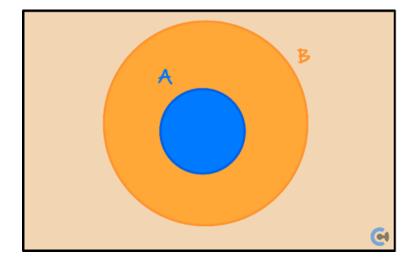
- The simplest method of proof. These are the proofs we have been working on in [2.1].
- Here, we are not altering the statement we need to prove.

Question 2

Prove that for all integers m and n, if m is divisible by 5 and n is divisible by 2, then 10m + 3n is even.

What is a contrapositive statement?

Contrapositive Statement



A⇒B Means that A is inside B

¬B⇒¬A
As if B does not occur, A can't either

(Contrapositive Statement of $A \Rightarrow B$) is $\neg B \Rightarrow \neg A$

NOTE: Swap the order and negate the statements.

Question 3

Write down the contrapositive of the following statement:

If all the sides of a triangle have equal length, then the triangle is equilateral.

CONTOUREDUCATION

Method 2: Proof by Contrapositive (Indirect Proof)

Instead of proving $A \Rightarrow B$, we can prove its contrapositive $\neg B \Rightarrow \neg A$.

Prove a contrapositive statement instead.

- Considered to be an ______, as the original statement is altered.
- Steps:
 - 1. Set up the contrapositive statement.
 - 2. Prove the contrapositive statement to be true.
 - 3. Conclude by saying "As contrapositive is true, the original statement is true."

Question 4

Prove the following conditional statement using contrapositive:

Let $x \in R$. If x is irrational, then $\sqrt{x + \frac{1}{5}}$ is irrational.

What is a contradicting statement?

Contradicting Statement

(Contradicting Statement of $A \Rightarrow B$) is $A \Rightarrow \neg B$

Negate the ______.

Ouestion 5

State the contradicting statement of the following:

If x is rational, then x^2 is rational.

Method 3: Proof by Contradiction (Indirect Proof)

To Prove $A \Rightarrow B$

Assume $A \Rightarrow \neg B$ is true

And show that the assumption is FALSE.

- > Steps:
 - 1. First, assume that the contradicting statement is true.
 - 2. Show that the assumption has a contradiction, and is hence false.
 - 3. Conclude by saying "Since the contradicting statement is false, the original statement is true."
- > Considered to be an ______, as the original statement is altered.

Active Recall: De Morgan's Law

$$\neg(A \land B) =$$

$$\neg(A \lor B) =$$

Question 6

Let $a, b \in R$. Prove that if a + b > 150, then a > 75 or b > 75.

Key Takeaways

- ☑ Direct proof involves proving without changing the conditional statement.
- ✓ The contrapositive of a statement $A \rightarrow B$ is given by $\neg B \rightarrow \neg A$.
- Proof by contrapositive involves proving the contrapositive of the conditional statement instead.
- ✓ Proof by contradiction requires first assuming that the contradicting statement is true, then showing contradiction.

Converse Statements

Definition: Conditional statement that flows in the opposite direction.

(Converse Statement of $A \Rightarrow B$) is $B \Rightarrow A$

Question 7

For the following statement, write down the converse statement, and conclude whether the converse is true:

If x is divisible by 2 and 5, then it is divisible by 10.

Equivalent Statements (Biconditional)

It is a biconditional statement where if the original is ______, its converse is

$$A \Rightarrow B$$
 and $B \Rightarrow A$

$$A \Leftrightarrow B$$

A is true, if and only if B

- ► In description, *B* is true _______ *A* is true.
- To prove equivalent statements, we prove each direction separately.

NOTE: For if and only if (equivalent statement), we must prove both converse statements.

0	0
Ouestion	δ

Let n be an integer. Prove that n is odd, if and only if n^2 is odd.

Key Takeaways

- ✓ The converse statement of $A \rightarrow B$ is given by $B \rightarrow A$.
- ✓ An equivalent statement is when a statement and its converse both are proved to be true.
- ☑ "If and only if" stands for an equivalent statement.

Universal Quantifiers

______ is a way to represent all members of a given set.

For all real numbers x, x^2 is never negative.

Notation: ∀ (Universal Quantifier) ______.

$$\forall x \in R, x^2 \geq 0$$

Question 9

Rewrite the following statement using the universal quantifier:

For all integers n, $n^2 - 4n$ is an integer.

Existence Quantifiers

______ is a way to represent certain members of a given set.

There exists an integer such that $x^2 - x - 12 = 0$.

Notation: 3 (Existential Quantifier) _______

$$\exists x \in \mathbb{Z}, x^2 - x - 12 = 0.$$

Question 10

Rewrite the following statement using the existence quantifier.

There exists a positive whole number n such that $2^n = 4$.

Negation of Universal and Existence Statements

- They are opposites of each other (with opposite conclusions).
- ¬Universal Statement = Existence Statement with Opposite Conclusion
- And vice versa.

Question 11

Write down the negation for the following statements below.

- **a.** If *n* is a natural number, then n + 1 > n.
- **b.** There exists an integer k such that $k^2 = k + 4$.

CONTOUREDUCATION

Disproving Universal Statement

- We prove the opposite (negation) existence statement.
- We call this proof by _______.
 - Giving a counterexample will be proving an opposite existence statement.

Question 12

Disprove the following statement: For all positive integers m, if m is prime then $m^2 + 4$ is also prime.

NOTE: We simply give ourselves a counter-example to disprove a universal statement.

Disproving Existence Statements

We prove the opposite (negation) _______.

NOTE: To disprove their existing statement, you must show the opposite universal statement as true

Question 13

Disprove the following statements:

There exists a real number x, such that $10 + 3x^2 = 3 + x^2$.

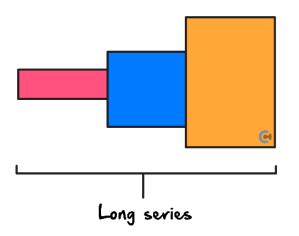
Key Takeaways

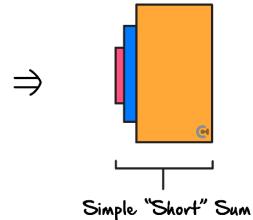
- ✓ There exists a quantifier ∃.
- ✓ For all quantifiers ∀.
- ✓ To prove a there exists statement, simply give an example.
- ▼ To prove for all statements, you must prove for all values.
- ✓ To disprove a there exist statement, prove the opposite for all statements.
- ☑ To disprove a for-all statement, prove the opposite there exist statement.

Telescopic Cancelling

Telescoping series is a series (sum of terms) where all terms cancel out except for the ______

The name comes from the visualisation as shown below.





Proofs of telescoping series can be done via _______

Question 14

a. Using partial fractions, find the values of a and b such that:

$$\frac{3}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$$

b. Hence, prove that:

$$\frac{3}{1 \times 2} + \frac{3}{2 \times 3} + \dots + \frac{3}{n \times (n+1)} = \frac{3n}{n+1}$$

Proof by Induction

- We will be following the given steps:" ________.
 - Step T: Test the statement for its first possible value.
 - **Step A:** Assume that the statement is true for n = k.
 - **Step P:** Prove that if the statement holds true for n = k, It also holds true for n = k + 1.
 - Add "By Assumption".
 - Step E: "By the principle of mathematical induction, the statement is true for a set of values."

Question 15

Prove that for all $n \in N$, we have:

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

NOTE: $1 + 2 + \cdots + n$ can be written as:

$$\sum_{i=1}^{n} i$$

Section B: Warmup (15 Marks)

Qu	estion 16 (4 marks)						
Let	Let $n \in \mathbb{N}$. Consider the statement						
	If $3^n - 1$ is prime, then n is odd.						
a.	Write down the contrapositive of the statement. (1 mark)						
h.	Prove that the contrapositive is true. (3 marks)						
υ.	110 to that the contrapositive is true. (5 marks)						
							

Question 17 (3 marks)	
Prove that if x is irrational then, $\sqrt{x-3}$ is irrational. Use the contradiction method in your proof.	
Space for Personal Notes	

ve that the following is true	e for all positive integer	s n: n is odd if and onl	y if $n^2 + 4$ is odd.	
ace for Personal Notes				

Section C: Exam Skills

Sub-Section: Solve Problems Using AM-GM Inequalities

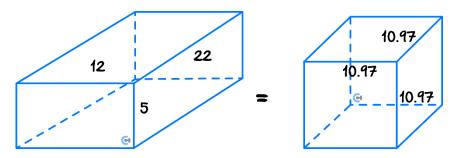
Context: Different Types of Means

- Normally, when we talk about a mean, we are talking about the 'arithmetic mean,' where we add the numbers and divide by the amount of numbers. In a sense, we do repeat addition (multiplication) and then undo that with division.
- There is also a geometric mean, where we multiply the different numbers, then undo repeated multiplication (exponentiation) by rooting the result.

Exploration: AM vs GM

- \triangleright Consider the numbers $a_1, a_2, a_3 \dots a_n$.
 - The arithmetic mean AM = _____.
 - The geometric mean GM = _____

Discussion: Interpreting Geometric Mean



- Imagine that 3 numbers were the sides of a box. Then, imagine we squished the box into a cube, where the sides are the geometric mean. How are these two things related?
- Geometric mean = Average side length of a same-volume cube.

Question 20 Walkthrough.

Calculate the arithmetic and geometric mean of 2, 4 and 8.

Question 21

Evaluate the geometric mean of 2^3 , 3^3 and 5^3 .

Exploration: AM, GM Inequality

- For any collection of non-negative real numbers, AM \geq GM.
- This can be proven with a special type of induction but is beyond the content of VCE!

Solve AM - GM Inequalities

- Steps:
 - 1. Rearrange the inequality into the form of an AM GM inequality, noting your steps.
 - **2.** Rewrite the steps backwards, starting from the AM GM inequality and ending with the original inequality.

Question 22 Walkthrough.

Show that if a, b > 0 then $\frac{a}{b} + \frac{b}{a} \ge 2$.

Question 23

If xyz = 27, what is the minimum value of x + y + z?

CONTOUREDUCATION	•
Question 24 Additional Question.	
If $wxyz = 16$, what is the minimum value of $w + x + y + z$?	

Sub-Section: Solve Arithmetic and Geometric Series Proofs

Context

We saw how we can prove arithmetic series results using the general formula, but we can also prove these with results through induction!

 $S_n = \frac{n}{2}(2a_1 + (n-1)d)$

Exploration: Proving the General Arithmetic Series Formula using Induction

- Test:
- ightharpoonup Assume: $S_k = \underline{\hspace{1cm}}$.
- Prove: We need to _______

LHS =

Explain: Hence, we have proven the arithmetic series formula by induction.

Now, let's look at particular examples!

Using induction, prove that $1 + 3 + 5 + \cdots + (2n - 1) = n^2$ for all $n \in \mathbb{N}$.

CONTOUREDUCATION	VCE Specialist Mathematics 9
Question 26	
Prove by induction that $2 + 4 + 6 \dots + 2n = n(n + 1)$ for all $n \in \mathbb{N}$.	

Prove by induction that $3 + 9 + 27 + \dots + 3^n = \frac{3(3^n - 1)}{2}$ for all $n \in \mathbb{N}$.

Sub-Section: Prove Divisibility with Induction

We've learnt to prove divisibility directly. What about through induction?

Proving that $a^n + b$ is Divisible by k using Induction

- 1. Let $a^n + b = \underline{\hspace{1cm}}$ where m is a natural number.
- **2.** Rearrange so that $a^n =$ ______.
- **3.** Replace a^n with _____ when proving.

Question 28 Walkthrough.	
Prove that $7^n + 5$ is divisible by 6 for all $n \in \mathbb{N}$.	

Question 29
Prove that $11^n - 1$ is divisible by 10 for all $n \in \mathbb{N}$.

Question 30 Additional Question.	
Prove that $7^n - 3^n$ is divisible by 4 for all $n \in N$.	

Section D: Exam 1 (24 Marks)

Question 31 (4 marks)			
Prove that $3^{2n} - 1$ is divisible by 8 for all $n \in N$.			
Constant Description			
Space for Personal Notes			

Question 32 (3 marks) f x and y are positive real num	bers, determine the	minimum value o	f:	
	(2:	$(x+3y)\left(\frac{8}{x}+\frac{3}{y}\right)$		
Space for Personal Notes				

estion 33 (3 marks)
we by contradiction that if p and q are positive integers, then $\frac{2p}{q} + \frac{2q}{p} \ge 4$.
ace for Personal Notes
ace for reisonal notes

Question 35 (4 marks)
Consider the sequence $t_n = \frac{3}{7}(8^n - 1), n \in \mathbb{N}$.
Prove by induction that every term of this sequence is an integer.

Space for Personal Notes

Question 36 (5 marks)	_	
To every using induction that $2^n > n^2$ for all integers n	≥ 5.	
		
pace for Personal Notes		
Jace for Personal Notes		

Section E: Exam 2 (5 Marks)

Question 37 (1 mark)

Which of the following best demonstrates a proof by contradiction?

- **A.** Assume a statement is false and show that this leads to a logical inconsistency.
- **B.** Use specific examples to verify the truth of a statement.
- **C.** Start from a known fact and logically deduce the conclusion.
- **D.** Test a hypothesis by substituting values into an equation.

Question 38 (1 mark)

A student claims: "The sum of any two odd numbers is even." To prove this, which of the following approaches would work?

- **A.** Test the statement with one example, such as 3 + 5.
- **B.** Test the statement with multiple examples, such as 1 + 3 and 7 + 9.
- C. Represent two odd numbers as 2n + 1 and 2m + 1, then show their sum is even.
- **D.** Assume the statement is false and attempt to find a counter-example.

Question 39 (1 mark)

Which of the following is a valid proof for the statement: "If a number is divisible by 4, then it is even"?

- **A.** Check if the statement is true for one number divisible by 4.
- **B.** Write any number divisible by 4 as 4n, and note that 4n is also divisible by 2.
- C. Write the number as 4n + 1 and verify it is divisible by 4.
- **D.** None of the above.

Question 40 (1 mark)

A rectangle has a fixed perimeter of 20 units. Which of the following values for the side lengths maximises its area?

- **A.** Side lengths 4 and 6.
- **B.** Side lengths 3 and 7.
- C. Side lengths 5 and 5.
- **D.** Side lengths 7 and 4.

Question 41 (1 mark)

Consider the statement: "If a number is divisible by 6, then it is divisible by 3." What is the contrapositive of this statement?

- **A.** If a number is divisible by 3, then it is not divisible by 6.
- **B.** If a number is not divisible by 3, then it is not divisible by 6.
- **C.** If a number is not divisible by 6, then it is not divisible by 3.
- **D.** If a number is divisible by 6, then it is not divisible by 3.

Contour Check

<u>Learning Objective</u> : [2.3.1] - Solve Problems using AM-GM Inequalities
Key Takeaways
\square The geometric mean of a_1, a_2, a_3 is
□ When dealing with AM and GM,
<u>Learning Objective</u> : [2.3.2] - Solve Arithmetic and Geometric Series Proofs
Key Takeaways
☐ Geometric and arithmetic series results can be proven using
<u>Learning Objective</u> : [2.3.3] - Prove Divisibility with Induction
Key Takeaways
$lacktriangle$ To prove a^n+b is divisible by something, we have to rearrange for

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- When Are They? 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

