

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs Exam Skills [2.3]

Homework Solutions

Homework Outline:

Compulsory Questions	Pg 2- Pg 19	
Supplementary Questions	Pg 20- Pg 34	

Section A: Compulsory Questions

Sub-Section [2.3.1]: Solve Problems Using AM-GM Inequalities

0	1
Question	J

Show using the AM-GM inequality that for x > 0 we have:

$$3x + \frac{3}{x} \ge 6$$

By the AM-GM it must be that

$$\frac{3x + \frac{3}{x}}{2} \ge \sqrt{3x \cdot \frac{3}{x}}$$

$$\implies 3x + \frac{3}{x} \ge 2\sqrt{9}$$

$$3x + \frac{3}{x} \ge 6.$$

Find the maximum value of $2 - a - \frac{1}{2a}$ for all a > 0.

We write this as $2 - \left(a + \frac{1}{2a}\right)$. So our problem is to minimise $a + \frac{1}{2a}$. By the AM-GM we have

$$\frac{a+\frac{1}{2a}}{2} \ge \sqrt{\frac{1}{2}}$$

$$\implies a+\frac{1}{2a} \ge \frac{2}{\sqrt{2}} = \sqrt{2}$$

Therefore the minimum value of $a + \frac{1}{2a}$ is $\sqrt{2}$. So the maximum value of $2 - a - \frac{1}{2a}$ is $2 - \sqrt{2}$.

أزار

Let *a* and *b* be positive real numbers. Show that:

$$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$$

By AM-GM we have that

$$\frac{1/a+1/b}{2} \geq \sqrt{\frac{1}{a} \cdot \frac{1}{b}} = \frac{1}{\sqrt{ab}}$$

therefore,

$$\frac{1}{a} + \frac{1}{b} \ge \frac{2}{\sqrt{ab}}$$

another application of the AM-GM gives us that

$$\frac{a+b}{2} \ge \sqrt{ab}$$

$$\implies \frac{a+b}{4} \ge \frac{\sqrt{ab}}{2}$$

$$\implies \frac{4}{a+b} \le \frac{2}{\sqrt{ab}}$$

Therefore we have that

$$\frac{4}{a+b} \leq \frac{2}{\sqrt{ab}} \leq \frac{1}{a} + \frac{1}{b}$$

which shows that $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$

Sub-Section [2.3.2]: Solve Arithmetic and Geometric Proofs

Question 4

Prove using induction that $5 + 8 + 11 + \cdots + (3n + 2) = \frac{n(3n+7)}{2}$.

Let P(n) be the statement that $5 + 8 + 11 + \cdots + (3n + 2) = \frac{n(3n + 7)}{2}$.

It is clear that P(1) is true since $5 = \frac{1(3+7)}{2}$. Now assume that P(k) is true for some $k \in \mathbb{N}$ we then have that

$$5+8+11+\dots+3k+2+3(k+1)+2 = \frac{k(3k+7)}{2}+3(k+1)+2$$

$$= \frac{3k^2+7k+6k+10}{2}$$

$$= \frac{(k+1)(3k+10)}{2}$$

$$= \frac{(k+1)(3(k+1)+7)}{2}$$

therefore P(k+1) is true. So by the principle of mathematical induction the statement P(n) is true for all $n \in \mathbb{N}$.

Prove using induction that $1 \cdot 4 + 2 \cdot 5 + \cdots + n(n+3) = \frac{n(n+1)(n+5)}{3}$.

Let P(n) be the statement that $1 \cdot 4 + 2 \cdot 5 + \cdots + n(n+3) = \frac{n(n+1)(n+5)}{3}$. It is clear that P(1) is true since $4 = \frac{1(2)(6)}{3}$. Now assume that P(k) is true for some $k \in \mathbb{N}$ we then have that

$$1 \cdot 4 + 2 \cdot 5 + \dots + k(k+3) + (k+1)(k+4) = \frac{k(k+1)(k+5)}{3} + (k+1)(k+4)$$

$$= \frac{k(k+1)(k+5) + 3(k+1)(k+4)}{3}$$

$$= \frac{(k+1)(k(k+5) + 3(k+4))}{3}$$

$$= \frac{(k+1)(k^2 + 8k + 12)}{3}$$

$$= \frac{(k+1)(k+2)(k+6)}{3}$$

therefore P(k+1) is true. So by the principle of mathematical induction the statement P(n) is true for all $n \in \mathbb{N}$.

Prove using induction that $3 \cdot 2 + 3 \cdot 2^2 + 3 \cdot 2^3 + \dots + 3 \cdot 2^n = 6(2^n - 1)$.

Let P(n) be the statement that $3 \cdot 2 + 3 \cdot 2^2 + 3 \cdot 2^3 + \cdots + 3 \cdot 2^n = 6(2^n - 1)$. It is clear that P(1) is true since $6 = 6(2^1 - 1)$. Now assume that P(k) is true for some $k \in \mathbb{N}$ we then have that

$$\begin{aligned} 3 \cdot 2 + 3 \cdot 2^2 + 3 \cdot 2^3 + \dots + 3 \cdot 2^n + 3 \cdot 2^{n+1} &= 6(2^n - 1) + 3 \cdot 2^{n+1} \\ &= 3 \cdot 2^{n+1} - 6 + 3 \cdot 2^{n+1} \\ &= 6 \cdot 2^{n+1} - 6 \\ &= 6(2^{n+1} - 1) \end{aligned}$$

therefore P(k+1) is true. So by the principle of mathematical induction the statement P(n) is true for all $n \in \mathbb{N}$.

Sub-Section [2.3.3]: Prove Divisibility With Induction

Question 7

Prove using induction that $5^n - 1$ is divisible by 4 for all $n \in \mathbb{N}$.

Let $f(n) = 5^n - 1$.

Base case: f(1) = 5 - 1 = 4 is divisible by 4.

Inductive step: Assume that f(k) is divisible by 4 for some $k \in \mathbb{N}$. That is f(k) = 4m, $m \in \mathbb{N}$. Then we have

$$f(k+1) - f(k) = 5^{k+1} - 1 - (5^k - 1)$$

$$= 5^{k+1} - 5^k + 4m$$

$$= 5^k (5-1) + 4m$$

$$= 4(5^k + m)$$

$$= 4p, \quad p \in \mathbb{N}$$

thus f(k+1) is divisible by 4 and so by the principle of mathematical induction f(n) is divisible by 4 for all $n \in \mathbb{N}$.

Prove using induction that $4^n + 6n - 1$ is divisible by 3 for all $n \in \mathbb{N}$.

Let
$$f(n) = 4^n + 6n - 1$$
.

Base case: f(1) = 4 + 6 - 1 = 9 is divisible by 3.

Inductive step: Assume that f(k) is divisible by 3 for some $k \in \mathbb{N}$. That is f(k) = 3m, $m \in \mathbb{N}$. Then we have

$$\begin{split} f(k+1) - f(k) &= 4^{k+1} + 6(k+1) - 1 - (4^k + 6k - 1) \\ &= 4^{k+1} - 4^k + 6 \\ \Longrightarrow f(k+1) &= 4^k (4-1) + 6 + 3m \\ &= 3 \cdot 4^k + 3(2+m) \\ &= 3(4^k + 2 + m) \\ &= 3p, \quad p \in \mathbb{N} \end{split}$$

thus f(k+1) is divisible by 3 and so by the principle of mathematical induction f(n) is divisible by 3 for all $n \in \mathbb{N}$.

Prove using induction that $5^{2n} + 3n - 1$ is divisible by 9 for all $n \in \mathbb{N}$.

Let $f(n) = 5^{2n} + 3n - 1$.

Base case: f(1) = 25 + 3 - 1 = 27 is divisible by 9.

Inductive step: Assume that f(k) is divisible by 9 for some $k \in \mathbb{N}$. That is f(k) = 9m, $m \in \mathbb{N}$. Then we have

$$\begin{split} f(k+1) &= 5^{2k+2} + 3k + 3 - 1 \\ &= 25(5^{2k}) + 3k + 2 \\ &= 25(9m - 3k + 1) + 3k + 2 \\ &= 25(9m) + 27 - 72k \\ &= 9(25m) + 9(3 - 8k) \\ &= 9(25m - 8k + 3) \\ &= 9p, \quad p \in \mathbb{N} \end{split}$$

thus f(k+1) is divisible by 9 and so by the principle of mathematical induction f(n) is divisible by 9 for all $n \in \mathbb{N}$.

Sub-Section: Exam 1 Questions

Question 10

Consider the statement below:

If $a + b \ge 17$, then $a \ge 8$ or $b \ge 8$.

a. Write down a statement to begin a proof by contradiction for the statement above.

If $a + b \ge 17$, then a < 8 and b < 8.

b. Hence, obtain a contradiction and prove the original statement.

If a < 8 and b < 8, then a + b < 16, which contradicts the fact that $a + b \ge 17$.

Therefore, we conclude that the original statement holds.

Use a direct proof to prove that $n^3 + 3n^2 + 2n$ is divisible by 6 for all $n \in \mathbb{N}$.

Let $f(n) = n^3 + 3n^2 + 2n$. We factorise f(n).

$$f(n) = n(n^2 + 3n + 2)$$

= $n(n+1)(n+2)$

Now f(n) is the product of three consecutive integers and is therefore divisible by both 2 and 3.

Therefore f(n) must be divisible by $2 \times 3 = 6$.

Prove using induction that $\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$, for all $n \in \mathbb{N}$.

Let P(n) be the statement that $\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$, for all $n \in \mathbb{N}$.

Base case: $P(1) = \frac{1}{2} = 1 - \frac{1}{2}$ is true.

Inductive step: Suppose that P(k) holds for some $k \in \mathbb{N}$ then it must be that

$$\begin{split} \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^k} + \frac{1}{2^{k+1}} &= 1 - \frac{1}{2^k} + \frac{1}{2^{k+1}} \\ &= \frac{2^{k+1} - 2 + 1}{2^{k+1}} \\ &= \frac{2^{k+1} - 1}{2^{k+1}} \\ &= 1 - \frac{1}{2^{k+1}} \end{split}$$

therefore P(k+1) is true and so by the POMI P(n) must be true for al $n \in \mathbb{N}$.

CONTOUREDUCATION

Question 13

Prove that for all $n \in \mathbb{N}$, n^3 is odd, if and only if, n is odd.

Hint: Use the contrapositive for one of the directions.

(⇒) For this direction we will prove the contrapositive:

If n is even then n^3 is even.

Let n = 2k for $k \in \mathbb{Z}$, then

$$n^3 = (2k)^3 = 8k^3 = 2(4k^2)$$

which is even, since $4k^2 \in \mathbb{Z}$.

 (\Leftarrow) if n is odd then n^3 is odd. Let n = 2k + 1 for $k \in \mathbb{Z}$, then

$$n^{3} = (2k + 1)^{3}$$

$$= 8k^{3} + 12k^{2} + 6k + 1$$

$$= 2(4k^{3} + 6k^{2} + 3k) + 1$$

which is odd, since $4k^3 + 6k^2 + 3k \in \mathbb{Z}$.

We have proved both directions so our proof is complete.

Question	14
Question	14

Prove by contradiction that $\sqrt{2} + \sqrt{5} > \sqrt{13}$.

Suppose for a contradiction that $\sqrt{2} + \sqrt{5} \le \sqrt{13}$. Then we will have

$$(\sqrt{2} + \sqrt{5})^2 \le 13$$

$$2 + 5 + 2\sqrt{10} \le 13$$

$$2\sqrt{10} \leq 6$$

$$\sqrt{10} \le 3$$

however this last statement is clearly false since $\sqrt{10} > \sqrt{10}$

Prove using induction that $25^n + 75 \cdot 25^{n-1}$ is divisible by 100 for all $n \in \mathbb{N}$.

Let $f(n) = 25^n + 75 \cdot 25^{n-1}$.

Base case: f(1) = 25 + 75 = 100 is divisible by 100.

Inductive step: Suppose that f(k) is divisible by 100 for some $k \in \mathbb{N}$, then f(k) = 100m for some $m \in \mathbb{N}$. This implies that $75 \cdot 25^{n-1} = 100m - 25^k$

$$\begin{split} f(k+1) &= 25^{k+1} + 75 \cdot 25^k \\ &= 25 \cdot 25^k + 75 \cdot 25 \cdot 25^{k-1} &= 25 \cdot 25^k + 25(100m - 25^k) \\ &= 25(25^k + 100m - 25^k) \\ &= 100(25m) \\ &= 100p, \quad p \in \mathbb{N} \end{split}$$

so f(k+1) is divisible by 100. Thus by the priniple of mathematical induction f(n) is divisible by 100 for all $n \in \mathbb{N}$.

Bernoulli's inequality states that if $a \in \mathbb{R}$, $a \ge -1$ and $n \in \mathbb{N}$, $n \ge 1$, then

$$(1+a)^n \ge 1+an.$$

Prove this inequality using induction.

Let P(n) be the statement that if $a \in \mathbb{R}$, $a \ge -1$ and $n \in \mathbb{N}$, $n \ge 1$, then $(1+a)^n \ge 1 + an$. Base case: P(1): $(1+a)^1 = 1 + 1 \cdot a$ so is true.

Inductive step: Suppose that P(k) holds for some $k \in \mathbb{N}$ then it must be that

$$(1+a)^{k+1} = (1+a)^k (1+a)$$

$$\ge (1+ak)(1+a)$$

$$= 1+ak+a+ka^2$$

$$= 1+a(k+1)+ka^2$$

$$\ge 1+(k+1)a \quad \text{since } ka^2 \ge 0$$

therefore P(k+1) is true and so by the POMI P(n) must be true for al $n \in \mathbb{N}$.

Sub-Section: Exam 2 Questions

Question 17

A teacher claims: "To directly prove that the square of any odd number is odd, we can start by representing an odd number as 2n + 1." What would the next step in the proof be?

- **A.** Test this with specific odd numbers, such as 3 or 5.
- **B.** Square 2n + 1 and simplify to $4n^2 + 4n + 1$, then show this is odd.
- **C.** Assume the square of an odd number is not odd and find a contradiction.
- **D.** Conclude that odd numbers squared are always greater than even numbers.

Ouestion 18

Which of the following statements is true about mathematical proofs?

- **A.** A proof provides a logical argument that guarantees a statement is true in all cases.
- **B.** A proof can only be written for statements about numbers.
- **C.** A proof is valid if it works for at least two examples.
- **D.** A proof is the same as a hypothesis

Question 19

The statement "If a triangle is equilateral, then it is also isosceles" is given. What is the converse of this statement?

- **A.** If a triangle is equilateral, then it is not isosceles.
- **B.** If a triangle is isosceles, then it is equilateral.
- **C.** If a triangle is not equilateral, then it is not isosceles.
- **D.** If a triangle is not isosceles, then it is not equilateral.

Which of the following statements is logically equivalent to "If it is snowing, then it is cold"?

- **A.** If it is not snowing, then it is not cold.
- **B.** If it is not cold, then it is not snowing.
- **C.** If it is cold, then it is snowing.
- **D.** If it is snowing, then it is not cold.

Question 21

Which of the following is an example of a biconditional statement?

- **A.** If a number is even, then it is divisible by 2.
- **B.** If a polygon is a square, then it has four sides.
- C. A polygon is a square, if and only if, it has four equal sides and four right angles.
- **D.** If it rains, then the grass will be wet.

Ouestion 22

Consider the statement: "If a student studies, then they will pass the exam." Which of the following is true?

- A. The contrapositive is "If a student does not pass the exam, then they did not study."
- **B.** The converse is "If a student does not study, then they will not pass the exam."
- **C.** The converse is "If a student passes the exam, then they did not study."
- **D.** The contrapositive is "If a student passes the exam, then they studied."

Section B: Supplementary Questions

Sub-Section [2.3.1]: Solve Problems Using AM-GM Inequalities

Question 23

Show using the AM-GM inequality that for x > 0 we have:

$$5x + \frac{5}{x} \ge 10$$

Recall that the AM-GM inequality states that $\frac{a+b}{2} \ge \sqrt{ab}$ where a,b>0. Let a=5x and b=5/x. Then, $\frac{5x+5/x}{2} \ge \sqrt{5x\cdot 5/x}=5$. Thus, we obtain the inequality $5x+5/x \ge 10$.

Question 24

Minimise $2x + \frac{2}{x}$ over x > 0 by applying the AM-GM inequality, and hence maximise $6 - 2x - \frac{2}{x}$.

Using the AM-GM inequality (similar to in the previous problem), we conclude that $2x + 2/x \ge 4$. Furthermore, we see that 2x + 2/x = 4 when x = 1. Thus, 2x + 2/x attains a minimum of 4. Now, 6 - 2x - 2/x will be maximised as long as 2x + 2/x is minimised because in this situation, we would be subtracting the smallest possible number away from 6. Thus, the maximal value that 6 - 2x - 2/x can achieve is 2.

Find an expression for the area of a rectangle that has a perimeter of 4 units and a width of x units, and hence use the AM-GM inequality to maximise the area of such a rectangle.

A rectangle with width x must have length 2-x so that the perimter is 4 units. Thus, the area of such a shape is A(x)=x(2-x). Now, by the AM-GM inequality with a=x and b=2-x, we see that $ab \leq \left(\frac{a+b}{2}\right)^2 = \left(\frac{x+2-x}{2}\right)^2 = 1$. Note that this value is achieved by x=1. Hence, the maximum area is 1.

Question 26

Let x, y > 0. Furthermore, suppose that xy = 4. Find the minimum value of $xy^3 + x^3y$.

Applying the AM-GM inequality with $a=xy^3$ and $b=x^3y$, we find that $\frac{xy^3+x^3y}{2} \ge \sqrt{xy^3 \cdot x^3y} = x^2y^2$. Therefore, $xy^3+x^3y \ge 2x^2y^2 = 2 \cdot (4)^2 = 32$.

Sub-Section [2.3.2]: Solve Arithmetic and Geometric Proofs

Question 27

-

Prove using induction that $2 + 7 + 12 + \cdots + (5n - 3) = \frac{n(5n-1)}{2}$.

For n=1, we see that RHS = $\frac{1\cdot(5\cdot 1-1)}{2}$ = LHS. Now, assume the statement holds for some $N\in\mathbb{N}$. Observe that

$$2+7+12+\dots+(5(n+1)-3) = 2+7+12+\dots+(5n-3)+(5n+2)$$

$$= \frac{n(5n-1)}{2}+5n+2$$

$$= \frac{5n^2-n+10n+4}{2}$$

$$= \frac{5n^2+9n+4}{2}$$

$$= \frac{(n+1)(5n+4)}{2}$$

$$= \frac{(n+1)(5(n+1)-1)}{2}$$

Therefore, the statement holds for n+1 and by the principle of mathematical induction, the statement holds for all $n \in \mathbb{N}$.

Prove using induction that $1 \cdot 7 + 2 \cdot 8 + \cdots + n(n+6) = \frac{n(n+1)(2n+19)}{6}$.

For n = 1, we see that RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1+19)}{6} = 7 = 1 \cdot 7 = \text{LHS}$. Therefore, the statement holds for n = 1. Now, assume that the statement holds for some $n \in \mathbb{N}$. Observe that $1 \cdot 7 + 2 \cdot 8 + \dots + (n+1)((n+1) + 6) = 1 \cdot 7 + 2 \cdot 8 + \dots + n(n+6) + (n+1)(n+7)$ $= \frac{n(n+1)(2n+19)}{6} + (n+1)(n+7)$

$$= \frac{n(n+1)(2n+19) + 6(n+1)(n+7)}{6}$$

$$= \frac{(n+1)(2n^2 + 19n + 6n + 42)}{6}$$

$$= \frac{(n+1)(2n^2 + 25n + 42)}{6}$$

$$= \frac{(n+1)(n+2)(2n+21)}{6}$$

$$= \frac{(n+1)((n+1)+1)(2(n+1)+19)}{6}$$

Therefore, the statement is true for n+1 and by induction, the statement holds for all $n \in \mathbb{N}$.

Question 29

Prove using induction that $2 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3 + \dots + 2 \cdot 3^n = 3^{n+1} - 3$.

For n=1, we see that RHS = $3^2-3=6=2\cdot 3=$ LHS. Hence, the base case is true. Now, assume that the statement holds for some $n\in\mathbb{N}$. Observe that

$$\begin{array}{rcl} 2\cdot 3 + 2\cdot 3^2 + \dots + 2\cdot 3^{n+1} & = & 2\cdot 3 + 2\cdot 3^2 + \dots + 2\cdot 3^n + 2\cdot 3^{n+1} \\ & = & 3^{n+1} - 3 + 2\cdot 3^{n+1} \\ & = & 3\cdot 3^{n+1} - 3 \\ & = & 3^{n+2} - 3 \\ & = & 3^{(n+1)+1} - 3 \end{array}$$

Therefore, the statement holds for n+1 and by the principle of mathematical induction, the statement holds for all $n \in \mathbb{N}$.

ONTOUREDUCATION

Question 30

a. Prove using induction that for all $n \in \mathbb{N}$, $1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$.

For n=1, we have RHS $=\frac{1^2 \cdot 2^2}{4}=1=1^3=$ LHS. Hence, we see that the statement holds for n=1. Now, suppose that the statement holds for some $n\in\mathbb{N}$. Observe that $1^3+2^3+\cdots+(n+1)^3=1^3+2^3+\cdots+n^3+(n+1)^3$ $=\frac{n^2(n+1)^2}{4}+(n+1)^3$

$$1^{3} + 2^{3} + \dots + (n+1)^{3} = 1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2} + 4(n+1)^{3}}{4}$$

$$= \frac{(n+1)^{2}(n^{2} + 4n + 4)}{4}$$

$$= \frac{(n+1)^{2}(n+2)^{2}}{4}$$

$$= \frac{(n+1)^{2}((n+1) + 1)^{2}}{4}$$

Therefore, the statement holds for n+1 and by induction, the statement holds for all $n\in\mathbb{N}.$

b. Hence, write a rule for $2^3 + 4^3 + \cdots + (2n)^3$.

Hint: $2^3 + 4^3 + \cdots + (2n)^3$ is related to $1^3 + 2^3 + \cdots + n^3$ in a reasonably simple way.

Observe
$$2^3 + 4^3 + \dots + (2n)^3 = (2 \cdot 1)^3 + (2 \cdot 2)^3 + \dots + (2n)^3 = 8 \cdot (1^3 + 2^3 + \dots + n^3) = 2n^2(n+1)^2$$
.

c. Now, deduce a rule for $1^3 + 3^3 + \cdots + (2n-1)^3$ using the rule you obtained above.

Observe that $1^3 + \cdots + (2n)^3 = (1^3 + 3^3 + \cdots + (2n-1)^3) + (2^3 + 4^3 + \cdots + (2n)^3)$. The sum of the first 2n cubes comes from the first formula using 2n instead of n. Therefore,

$$1^{3} + 3^{3} + \dots + (2n-1)^{3} = \frac{(2n)^{2}(2n+1)^{2}}{4} - 2n^{2}(n+1)^{2}$$
$$= 2n^{4} - n^{2}$$

<u>Sub-Section [2.3.3]</u>: Prove Divisibility With Induction

ove t	using induction that if $n \in \mathbb{N}$, then $8^n - 1$ is divisible by 7.
- '' - '' - ''	We proceed by induction. For $n=1$, we have $8^n-1=7$, which is divisible by 7 as $7=7\cdot 1$. Therefore, the base case holds. Now, assume that 8^n-1 is divisible by 7 for some $n\in\mathbb{N}$. We want to show that $8^{n+1}-1$ is divisible by 7. Notice that $8^{n+1}-1=8\cdot 8^n-1=8(8^n-1)+7$. By assumption, $8^n-1=7k$ for some $k\in\mathbb{Z}$. Therefore, $8^{n+1}-1=7(8l+1)=7m$ where $m=8l+1\in\mathbb{Z}$. Therefore, we conclude that $8^{n+1}-7$ is divisible by 7 and by the principle of mathematical induction, 8^n-1 is divisible by 7 for all $n\in\mathbb{N}$.

Prove using induction that if $n \in \mathbb{N}$, then $n^3 + 3n^2 + 2n$ is divisible by 3.

Note: If you want to make this question a bit harder, you can instead show that $n^3 + 3n^2 + 2n$ is also divisible by 6. You might need to use the fact that the product of two consecutive integers is always even.

We proceed by induction. For n=1, we have $1^3+3\cdot 1^2+2\cdot 1=6=3\cdot 2$, which is divisible by 3. Now, assume that n^3+3n^2+2n is divisible by 3 for some $n\in\mathbb{N}$. Therefore, we can write $n^3+3n^2+2n=3m$ for some $m\in\mathbb{Z}$. Notice that

$$(n+1)^3 + 3(n+1)^2 + 2(n+1) = n^3 + 3n^2 + 3n + 1 + 3n^2 + 6n + 3 + 2n + 2$$

$$= (n^3 + 3n^2 + 2n) + (3n^2 + 3n + 1 + 6n + 3 + 2)$$

$$= (n^3 + 3n^2 + 2n) + (3n^2 + 9n + 6)$$

$$= 3m + 3(n^2 + 3n + 2)$$

$$= 3(m+n^2 + 3n + 2)$$

$$= 3p$$

where $p=m+n^2+3n+2\in\mathbb{Z}$. Therefore, $(n+1)^3+3(n+1)^2+2(n+1)$ is divisible by 3. Furthermore, using the principle of mathematical induction, n^3+3n^2+2n is divisible by 3 for all numbers $n\in\mathbb{N}$.

ONTOUREDUCATION

Question 33

Prove using induction that if $n \in \mathbb{N}$, then $10^{n+1} + 10^n + 1$ is divisible by 3.

Note: The statement says that 111, 1101, 11001, etc. are all divisible by 3.

For n=1, we have $10^{n+1}+10^n+1=111=3\cdot 37$. Therefore, the base case holds. Now assume that $10^{n+1}+10^n+1$ is divisible by 3 for some $n\in\mathbb{N}$. In particular, this means $10^{n+1}+10^n+1=3k$ for some $k\in\mathbb{Z}$. Furthermore,

$$10^{n+2} + 10^{n+1} + 1 = 10(10^{n+1} + 10^n) + 1$$

$$= 10(10^{n+1} + 10^n + 1) - 9$$

$$= 10 \cdot 3k - 9$$

$$= 3(10p - 3)$$

$$= 3m,$$

where $m = 10p - 3 \in \mathbb{Z}$. Therefore, we may conclude that $10^{n+2} + 10^{n+1} + 1$ is divisible by 3 and by the principle of mathematical induction $10^{n+1} + 10^n + 1$ is divisible by 3 for all. $n \in \mathbb{N}$.

Question 34

Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then (2n)! is divisible by 2^n .

For n=1, we have $(2n)!=2!=2=2^1\cdot 1$, which we see is divisible by 2^1 . Now, assume that (2n)! is divisible by 2^n if n is some natural number. Then, we may write $(2n)!=2^n\cdot k$, where $k\in\mathbb{Z}$. Furthermore, we see that

$$(2(n+1))! = (2n+2)! = (2n)! \cdot (2n+1) \cdot (2n+2) = 2 \cdot 2^n \cdot k \cdot (2n+1)(n+1) = 2^{n+1}p,$$

where $p = k(2n+1)(n+1) \in \mathbb{Z}$. Therefore, (2(n+1))! is divisible by 2^{n+1} and by the principle of mathematical induction, (2n)! is divisible by 2^n for all $n \in \mathbb{N}$.

Sub-Section: Exam 1 Questions

Question 35		
Prove using induction that for all $n \in \mathbb{N}$, $n < 2^n$.		
We begin by verfiying the base case: If $n=1$ then LHS = $1 < 2 = 2^n = \text{RHS}$. Now, assume that $n < 2^n$ for some $n \in \mathbb{N}$. We see that $n+1 < 2^n+1 < 2^n+2^n = 2^{n+1}$, where we have also used the fact that $1 < 2^n$ for all $n \in \mathbb{N}$. Therefore, we have shown that $n+1 < 2^{n+1}$. Using the principle of mathematical induction, we conclude that $n < 2^n$ for all $n \in \mathbb{N}$.		
Space for Personal Notes		

Consider the statement below:

There cannot exist two integers m and n such that 5m + 10n = 3.

a. Write down a statement to begin a proof by contradiction for the statement above.

There exists $m, n \in \mathbb{Z}$ such that 5m + 10n = 3.

b. Hence, obtain a contradiction and prove the original statement.

If there are two integers $m, n \in \mathbb{Z}$ so that 5m + 10n = 3, then the left-hand side is divisible by 5, but the right-hand side is not divisible by 5, which is a contradiction. Therefore, there cannot exist two integers m and n such that 5m + 10n = 3.

Prove using induction that $6^n + 4$ is divisible by 5 for all $n \in \mathbb{N}$.

Let $f(n) = 6^n + 4$.

Base Case: f(1) = 6 + 4 = 10 is divisible by 5.

Inductive step: Suppose that f(k) is divisible by 5 for any $k \in \mathbb{N}$. We then have f(k) = 5m for some $m \in \mathbb{N}$. Now,

$$f(k+1) - f(k) = 6^{k+1} + 4 - (6^k + 4)$$

$$\implies f(k+1) = 6^{k+1} - 6^k + 5m$$

$$= 6^k (6-1) + 5m$$

$$= 5(6^k + m)$$

$$= 5p, \quad p \in \mathbb{N}$$

therefore f(k+1) is divisible by 5 and thus by the priniple of mathematical induction f(n) is divisible by 5 for all $n \in \mathbb{N}$.

Prove using induction that for all $n \in \mathbb{N}$, it holds that $\left(1 + \frac{1}{1}\right)\left(2 + \frac{1}{2}\right)\cdots\left(1 + \frac{1}{n}\right) = n + 1$.

For the base case where n=1, we see that the left-hand side is $1+\frac{1}{1}=2=1+1$, which is equal to the right-hand side. Therefore, the base case has been verified. Now, suppose that $\left(1+\frac{1}{1}\right)\left(2+\frac{1}{2}\right)\cdots\left(1+\frac{1}{n}\right)=n+1$ for some $n\in\mathbb{N}$. We use the induction hypothesis to conclude

$$\left(1+\frac{1}{1}\right)\left(2+\frac{1}{2}\right)\cdots\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n+1}\right) = (n+1)\left(1+\frac{1}{n+1}\right)$$

$$= (n+1)+1$$

$$= n+2$$

Therefore, by the principle of mathematical induction, it holds that

$$\left(1+\frac{1}{1}\right)\left(2+\frac{1}{2}\right)\cdots\left(1+\frac{1}{n}\right)=n+1$$

for all $n \in \mathbb{N}$.

Prove the following biconditional statement for $x, y \in \mathbb{Z}$:

x + y is even, if and only if, $x^2 + y^2$ is even.

(\Rightarrow) Suppose that x+y is even. Then x+y=2n for some $n\in\mathbb{Z}$. Recall $(x+y)^2=x^2+2xy+y^2$. Therefore, $x^2+y^2=(x+y)^2-2xy=4n^2-2xy=2(2n^2-xy)=2k$, where $k=2n^2-xy\in\mathbb{Z}$. Therefore, x^2+y^2 is even.

(⇐) We shall prove the reverse direction by proving its contrapositive: If x+y is odd, then x^2+y^2 is odd. Thus, assume that x+y=2n+1 for some $n \in \mathbb{Z}$. Similar to above, $x^2+y^2=(x+y)^2-2xy=(2n+1)^2-2xy=4n^2+4n+1-2xy=2(2n^2+2n-xy)+1=2k+1$, where $k=2n^2+2n-xy \in \mathbb{Z}$. Therefore, x^2+y^2 is odd.

Therefore, x + y is even if and only if $x^2 + y^2$ is even.

Sub-Section: Exam 2 Questions

Question 40

The contrapositive to the statement, "If n is even, then n^2 is even." is:

- **A.** If n^2 is odd, then n is odd.
- **B.** If n^2 is even, then n is even.
- C. If n is odd, then n^2 is even.
- **D.** If n is odd, then n^2 is odd.

Question 41

Consider the following:

For all
$$k > K$$
, $1.5^k < (k-1)!$

What is the smallest value of $K \in \mathbb{N}$ such that the above holds:

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 5

Question 42

The negation of the statement, "All the cars in the carpark are black." is:

- **A.** All the vans in the carpark are black.
- **B.** There exists a car in the carpark that is not black.
- **C.** There exists a bus in the carpark without a mirror.
- **D.** All the cars in the carpark are yellow.

CONTOUREDUCATION

Question 43

Find the minimum value of $6x^2 + \frac{6}{x^2}$.

- **A.** 6
- **B.** 25
- **C.** 15
- **D.** 12

Question 44

Consider the following statement:

If a car in the carpark is black, then it costs a lot of money.

Which of the following is the converse of the above?

- **A.** If a bus in the carpark costs a lot of money, then it is not black.
- **B.** If a car costs a lot of money, then it is in the carpark.
- C. If a car in the carpark is not black, then it costs a lot of money.
- **D.** If a car in the carpark costs a lot of money, then it is black in colour.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

