

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs Exam Skills [2.3]

Homework

Homework Outline:

Compulsory Questions	Pg 2- Pg 19	
Supplementary Questions	Pg 20- Pg 34	

Section A: Compulsory Questions

<u>Sub-Section [2.3.1]</u>: Solve Problems Using AM-GM Inequalities

Question 1		Í
Show using the	the AM-GM inequality that for $x > 0$ we have:	
	$3x + \frac{3}{x} \ge 6$	
Space for Per	rsonal Notes	

Ouestion	^
Question	4

Find the maximum value of $2 - a - \frac{1}{2a}$ for all a > 0.

Question	1
Chiesman	٠,

Let a and b be positive real numbers. Show that:

$$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$$

		-

<u>Sub-Section [2.3.2]</u>: Solve Arithmetic and Geometric Proofs

Question 4	
Prove using induction that $5 + 8 + 11 + \cdots + (3n + 2) = \frac{n(3n+7)}{2}$.	
	•

Λ	estion	_
	esiinn	7

Prove using induction that $1 \cdot 4 + 2 \cdot 5 + \cdots + n(n+3) = \frac{n(n+1)(n+5)}{3}$.

Question 6	الألا
Prove using induction that $3 \cdot 2 + 3 \cdot 2^2 + 3 \cdot 2^3 + \dots + 3 \cdot 2^n = 6(2^n - 1)$.	

2	Space for Personal Notes		

<u>Sub-Section [2.3.3]</u>: Prove Divisibility With Induction

Prove using induction that 5^n-1 is divisible by 4 for all $n\in\mathbb{N}$.
Space for Personal Notes

guestion 8	
rove using induction that $4^n + 6n - 1$ is divisible by 3 for all $n \in \mathbb{N}$.	
	
	·····
pace for Personal Notes	

Question 9	الألال
Prove using induction that $5^{2n} + 3n - 1$ is divisible by 9 for all $n \in \mathbb{N}$.	
Space for Personal Notes	
Space for a cisonal motes	

Sub-Section: Exam 1 Questions

Que	estion 10
Con	nsider the statement below:
	If $a + b \ge 17$, then $a \ge 8$ or $b \ge 8$.
a.	Write down a statement to begin a proof by contradiction for the statement above.
b.	Hence, obtain a contradiction and prove the original statement.
	- <u></u> -

11	
on 11	
irect proof to prove that $n^3 + 3n^2 + 2n$ is divisible by 6 for all $n \in \mathbb{N}$.	
for Dorsonal Motor	
for Personal Notes	

Question 12
Prove using induction that $\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$, for all $n \in \mathbb{N}$.

Question 13
Prove that for all $n \in \mathbb{N}$, n^3 is odd, if and only if, n is odd.
Hint : Use the contrapositive for one of the directions.
Space for Personal Notes

Question 14				
Prove by contradic	etion that $\sqrt{2} + \sqrt{5}$	$>\sqrt{13}$.		
				_
			 	 _
				_
Space for Persor	nal Notes			
•				

Question 15
Prove using induction that $25^n + 75 \cdot 25^{n-1}$ is divisible by 100 for all $n \in \mathbb{N}$.
Space for Personal Notes

Question 16	
Bernoulli's inequality states that if $a \in \mathbb{R}$, $a \ge -1$ and $n \in \mathbb{R}$	$\mathbb{N}, n \geq 1$, then
$(1+a)^n \ge$	1 + an.
Prove this inequality using induction.	
Space for Personal Notes	

Sub-Section: Exam 2 Questions

Question 17

A teacher claims: "To directly prove that the square of any odd number is odd, we can start by representing an odd number as 2n + 1." What would the next step in the proof be?

- **A.** Test this with specific odd numbers, such as 3 or 5.
- **B.** Square 2n + 1 and simplify to $4n^2 + 4n + 1$, then show this is odd.
- **C.** Assume the square of an odd number is not odd and find a contradiction.
- **D.** Conclude that odd numbers squared are always greater than even numbers.

Ouestion 18

Which of the following statements is true about mathematical proofs?

- **A.** A proof provides a logical argument that guarantees a statement is true in all cases.
- **B.** A proof can only be written for statements about numbers.
- **C.** A proof is valid if it works for at least two examples.
- **D.** A proof is the same as a hypothesis

Question 19

The statement "If a triangle is equilateral, then it is also isosceles" is given. What is the converse of this statement?

- **A.** If a triangle is equilateral, then it is not isosceles.
- **B.** If a triangle is isosceles, then it is equilateral.
- **C.** If a triangle is not equilateral, then it is not isosceles.
- **D.** If a triangle is not isosceles, then it is not equilateral.

Question 20

Which of the following statements is logically equivalent to "If it is snowing, then it is cold"?

- **A.** If it is not snowing, then it is not cold.
- **B.** If it is not cold, then it is not snowing.
- **C.** If it is cold, then it is snowing.
- **D.** If it is snowing, then it is not cold.

Question 21

Which of the following is an example of a biconditional statement?

- **A.** If a number is even, then it is divisible by 2.
- **B.** If a polygon is a square, then it has four sides.
- C. A polygon is a square, if and only if, it has four equal sides and four right angles.
- **D.** If it rains, then the grass will be wet.

Ouestion 22

Consider the statement: "If a student studies, then they will pass the exam." Which of the following is true?

- **A.** The contrapositive is "If a student does not pass the exam, then they did not study."
- **B.** The converse is "If a student does not study, then they will not pass the exam."
- C. The converse is "If a student passes the exam, then they did not study."
- **D.** The contrapositive is "If a student passes the exam, then they studied."

Section B: Supplementary Questions

Sub-Section [2.3.1]: Solve Problems Using AM-GM Inequalities

Question	23
Question	40

Show using the AM-GM inequality that for x > 0 we have:

$$5x + \frac{5}{x} \ge 10$$

Minimise $2x + \frac{2}{x}$ over x > 0 by applying the AM-GM inequality, and hence maximise $6 - 2x - \frac{2}{x}$.

uestion 25						
ind an expression f				units and a width	h of x units, an	d hence use
ne AM-GM inequal	ity to maximise th	ne area of such a	rectangle.			
						111
mastian 26						
Question 26						
Question 26 et $x, y > 0$. Furthe	rmore, suppose th	aat xy = 4. Find	the minimum va	lue of $xy^3 + x^3$	у.	עעע
	rmore, suppose th	at xy = 4. Find	the minimum va	lue of $xy^3 + x^3$	у.	ווונ
	rmore, suppose th	at xy = 4. Find	the minimum va	lue of $xy^3 + x^3$	у.	<i></i>
	rmore, suppose th	at xy = 4. Find		lue of $xy^3 + x^3$		<i></i>
	rmore, suppose th	at $xy = 4$. Find				<i></i>
	rmore, suppose th	at xy = 4. Find				<i></i>
	rmore, suppose th	at xy = 4. Find				
	rmore, suppose th	at xy = 4. Find				
	rmore, suppose th	at xy = 4. Find				
	rmore, suppose th	aat xy = 4. Find				
	rmore, suppose th	aat xy = 4. Find				
	rmore, suppose th	aat xy = 4. Find				
et <i>x</i> , <i>y</i> > 0. Furthe		aat xy = 4. Find				
		at xy = 4. Find				
et <i>x</i> , <i>y</i> > 0. Furthe		at xy = 4. Find				
et <i>x</i> , <i>y</i> > 0. Furthe		at xy = 4. Find				
et <i>x</i> , <i>y</i> > 0. Furthe		aat xy = 4. Find				

<u>Sub-Section [2.3.2]</u>: Solve Arithmetic and Geometric Proofs

Question 27
Prove using induction that $2 + 7 + 12 + \cdots + (5n - 3) = \frac{n(5n-1)}{2}$.

CONTOUREDUCATION

Question 28

Prove using induction that $1 \cdot 7 + 2 \cdot 8 + \cdots + n(n+6) = \frac{n(n+1)(2n+19)}{6}$.

Question 29

Prove using induction that $2 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3 + \dots + 2 \cdot 3^n = 3^{n+1} - 3$.

Question 30

a. Prove using induction that for all $n \in \mathbb{N}$, $1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$.

b. Hence, write a rule for $2^3 + 4^3 + \cdots + (2n)^3$.

Hint: $2^3 + 4^3 + \cdots + (2n)^3$ is related to $1^3 + 2^3 + \cdots + n^3$ in a reasonably simple way.

c. Now, deduce a rule for $1^3 + 3^3 + \cdots + (2n-1)^3$ using the rule you obtained above.

<u>Sub-Section [2.3.3]</u>: Prove Divisibility With Induction

rove using inc	duction that if $n \in \mathbb{N}$	N, then $8^n - 1$ is d	livisible by 7.		_
				 	_
· 				 	
pace for Per	sonal Notes				

Question 32
Prove using induction that if $n \in \mathbb{N}$, then $n^3 + 3n^2 + 2n$ is divisible by 3.
Note: If you want to make this question a bit harder, you can instead show that $n^3 + 3n^2 + 2n$ is also divisible by You might need to use the fact that the product of two consecutive integers is always even.
Space for Personal Notes

Prove using induction that if $n \in \mathbb{N}$, then $10^{n+1} + 10^n + 1$ is divisible by 3. Note: The statement says that 111, 1101, 11001, etc. are all divisible by 3. Question 34 Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is divisible by 2^n .	Question 33			الالا
Question 34 Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is	Prove using induction that if n	$\in \mathbb{N}$, then $10^{n+1} + 10^n + 1$	is divisible by 3.	
Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is	Note: The statement says that 1	11, 1101, 11001, etc. are a	all divisible by 3.	
Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is				
Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is				
Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is				
Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is				
Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is				
Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is				
Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is				
Recall that $n! = 1 \cdot 2 \cdot 3 \cdot \cdots n$. For example, $3! = 1 \cdot 2 \cdot 3$. Prove using induction that if $n \in \mathbb{N}$, then $(2n)!$ is				
	Question 34			أزازا
		For example, $3! = 1 \cdot 2 \cdot 3$	3. Prove using induction that if n	$\in \mathbb{N}$, then $(2n)!$ is

Question 35				
Prove using induction	that for all $n \in \mathbb{N}$, $n < \infty$	$< 2^n$.		
-				
Space for Personal	Notes			

Qu	estion 36	
Coı	nsider the statement below:	
	There cannot exist two integers m and n such that $5m + 10n = 3$.	
a.	Write down a statement to begin a proof by contradiction for the statement above.	
h	Hongo, obtain a controdiction and prove the original statement	
υ.	Hence, obtain a contradiction and prove the original statement.	
Sp	ace for Personal Notes	

Question 37				
ove using induction that $6^n + 4$ is divisible by 5 for all $n \in \mathbb{N}$.				
	-			
	-			
	_			
	_			
	_			
	-			
	-			
	-			
	-			
	-			
ace for Personal Notes				
_	we using induction that 6 ^π + 4 is divisible by 5 for all n ∈ N. ace for Personal Notes			

Question 38
Prove using induction that for all $n \in \mathbb{N}$, it holds that $\left(1 + \frac{1}{1}\right)\left(2 + \frac{1}{2}\right)\cdots\left(1 + \frac{1}{n}\right) = n + 1$.

Space for Personal Notes		

Question 39				
Prove the following biconditional statement for $x, y \in \mathbb{Z}$:				
	$x + y$ is even, if and only if, $x^2 + y^2$ is even.			
Space	for Personal Notes			
Space	TOT PEISONAL NOTES			

Sub-Section: Exam 2 Questions

Question 40

The contrapositive to the statement, "If n is even, then n^2 is even." is:

- **A.** If n^2 is odd, then n is odd.
- **B.** If n^2 is even, then n is even.
- C. If n is odd, then n^2 is even.
- **D.** If n is odd, then n^2 is odd.

Question 41

Consider the following:

For all
$$k > K$$
, $1.5^k < (k-1)!$

What is the smallest value of $K \in \mathbb{N}$ such that the above holds:

- **A.** 2
- **B.** 3
- **C.** 4
- **D.** 5

Question 42

The negation of the statement, "All the cars in the carpark are black." is:

- **A.** All the vans in the carpark are black.
- **B.** There exists a car in the carpark that is not black.
- C. There exists a bus in the carpark without a mirror.
- **D.** All the cars in the carpark are yellow.

Question 43

Find the minimum value of $6x^2 + \frac{6}{x^2}$.

- **A.** 6
- **B.** 25
- **C.** 15
- **D.** 12

Question 44

Consider the following statement:

If a car in the carpark is black, then it costs a lot of money.

Which of the following is the converse of the above?

- **A.** If a bus in the carpark costs a lot of money, then it is not black.
- **B.** If a car costs a lot of money, then it is in the carpark.
- C. If a car in the carpark is not black, then it costs a lot of money.
- **D.** If a car in the carpark costs a lot of money, then it is black in colour.

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

Free 1-on-1 Consults

What Are 1-on-1 Consults?

- Who Runs Them? Experienced Contour tutors (45 + raw scores and 99 + ATARs).
- Who Can Join? Fully enrolled Contour students.
- **When Are They?** 30-minute 1-on-1 help sessions, after-school weekdays, and all-day weekends.
- What To Do? Join on time, ask questions, re-learn concepts, or extend yourself!
- Price? Completely free!
- > One Active Booking Per Subject: Must attend your current consultation before scheduling the next:)

SAVE THE LINK, AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link

bit.ly/contour-specialist-consult-2025

