

Website: contoureducation.com.au | Phone: 1800 888 300 Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½ Proofs II [2.2]

Workbook

Outline:

Pg 24-34

Proving Conditional Statements

- Conditional Statements
- Methods of Proving Conditional Statements
- Direct Proof
- Proof by Contrapositive
- Proof by Contradiction

Converse Statements and Equivalent Statements

Converse Statements

Pg 2-18

Pg 19-23

Universal and Existential Quantifiers

- Universal Quantifier
- Existence Quantifier
- Negation of Universal and Existence Statement
- Disproving a Universal Statement
- Disproving an Existence Statement

Other Proof Techniques

Telescopic Cancelling

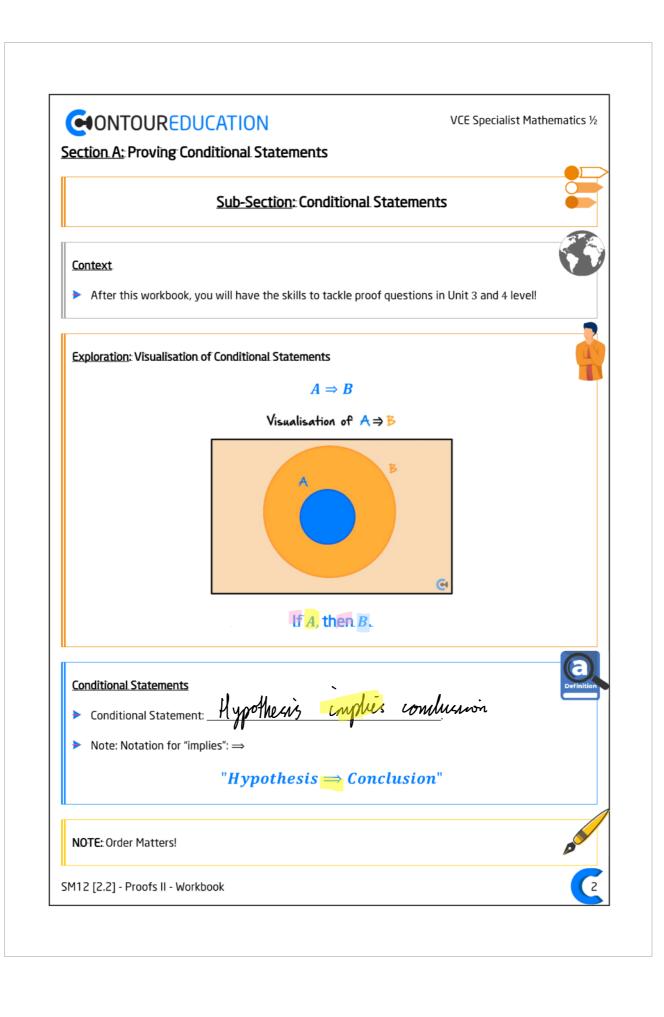
Proof by Induction

Pg 35-42

Learning Objectives:

SM12 [2.2.1] - Direct proofs, proofs by contrapositive and contradiction.

- □ SM12 [2.2.2] Converse and the equivalent of a conditional statement.
- SM12 [2.2.3] Proofs involving the universal and existence quantifiers.
- SM12 [2.2.4] Proofs by induction and telescoping series.



VCE Specialist Mathematics $\frac{1}{2}$

Let's look at some questions together!

Question 1 Walkthrough.

Write a conditional statement for the following:

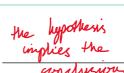
A customer will receive a coupon if they spend \$500.

If the customer spends \$500, then they will receive a coupon

Recall!

Active Recall: Conditional statements

> The relationship between the hypothesis and the conclusion is that



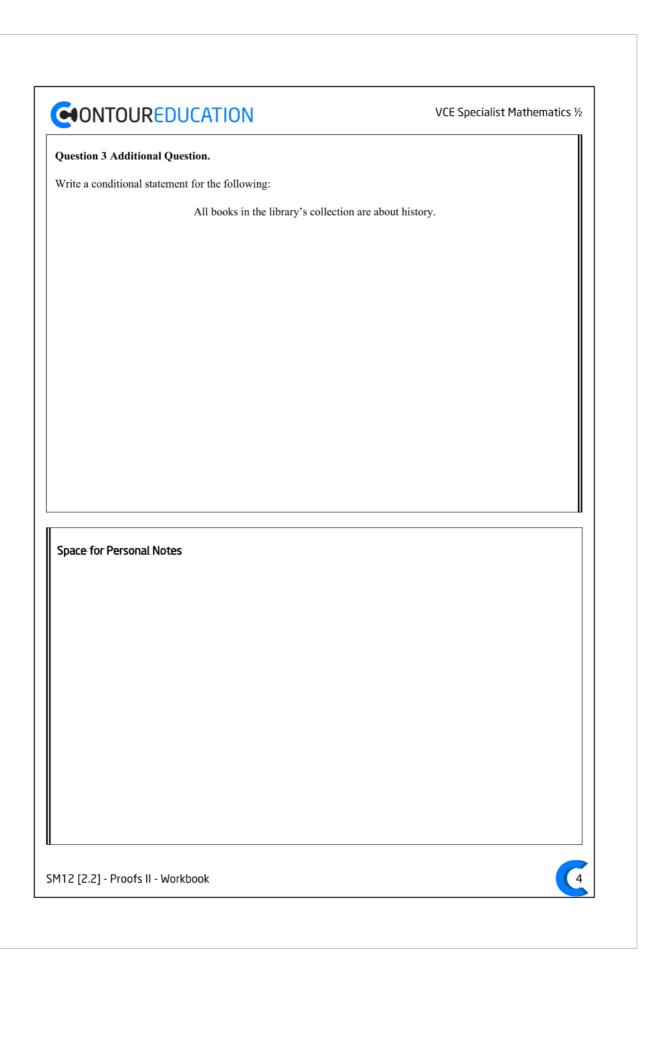
Your Turn!

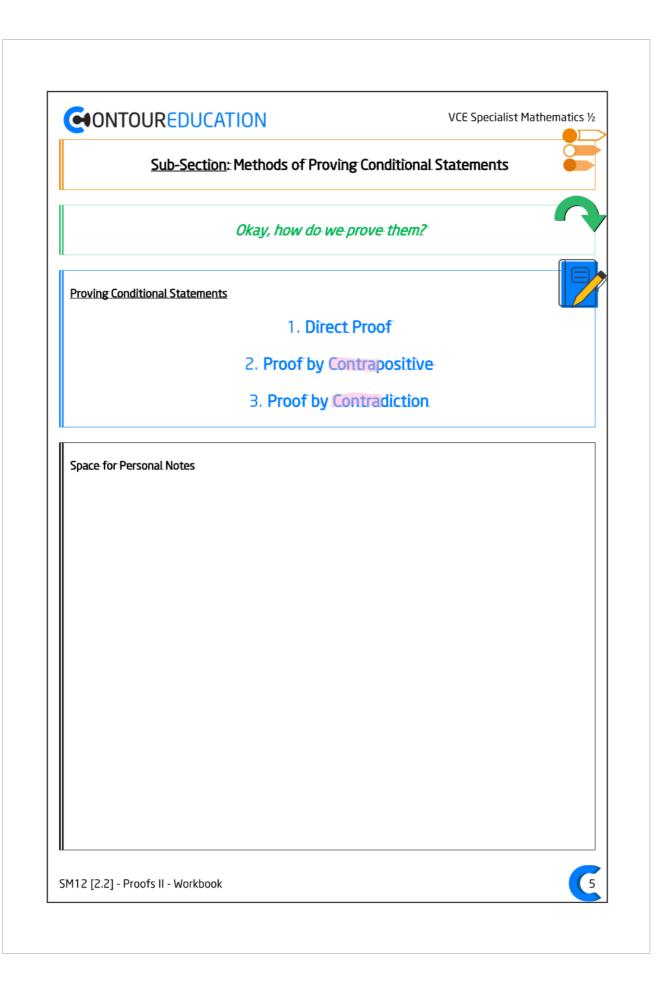
Question 2

Write a conditional statement for the following:

Doing strength training grows your muscles.

If you do strength training, then you will grow your muscles





Sub-Section: Direct Proof

Context

The proof question for the most recent VCAA Exam 1 was a direct proof!

REMINDER

From last week, we found that an even number can be written in the form:

2k, keZ integer

An odd number can be written in the form:

2k+1 keZ

If a number is divisible by 3, then it can be written in the form:

3k, kez

If a number is not divisible by 3, then it can be written in the form:

3k+1, 3k+2, kez

For proofs involving divisibility, we often need to split into ______

Method 1: Direct Proof

- The simplest method of proof. These are the proofs we have been working on in [2.1].
- Here we are not altering the statement we need to prove.

Question 4 Walkthrough.

Prove that if n is even, then n^3 is divisible by 8.

Let
$$n=2k$$
, $k\in\mathbb{Z}$ Let $k^3=m$, $m\in\mathbb{Z}$
 $n^3=(2k)^3$
 $n^3=8m$
 $n^3=8k^3$
 $n^3=8k^3$
 $n^3=8k^3$

NOTE: We did not change the statement itself! Hence, a direct proof.

Recall!

Active Recall: Direct proofs

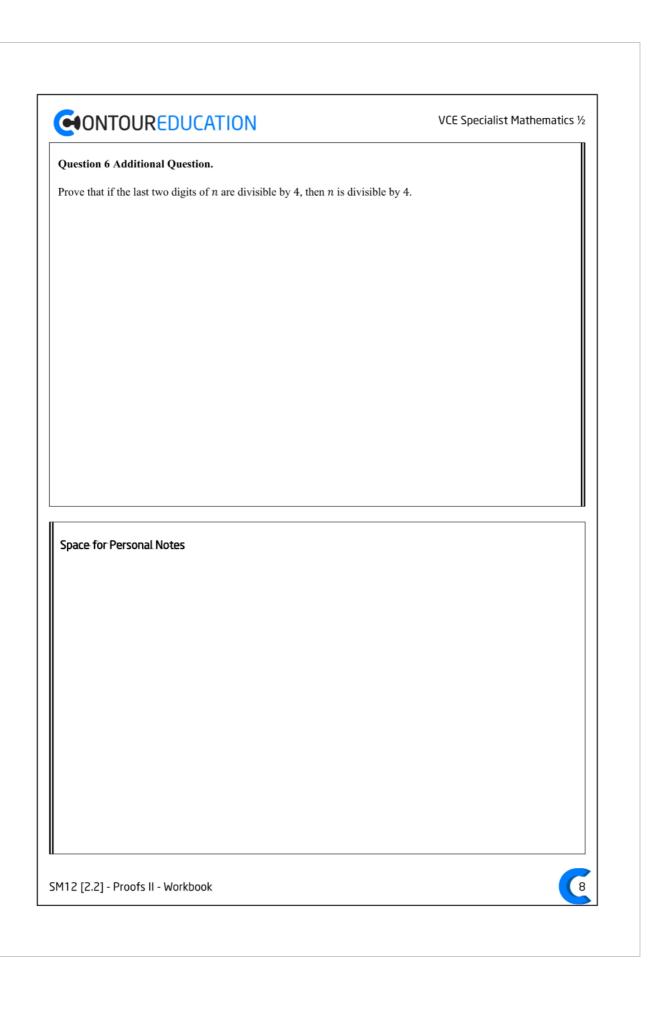
Your Turn!

Question 5

Prove that for all integers m and n, if m is divisible by 5 and n is divisible by 2, then 10m + 3n is even.

Let
$$m=5k$$
, $n=2\ell$, $k, \ell \in \mathbb{Z}$
 $10m+3n = 10(5k)+3(2\ell)$
 $= 50k+6\ell$
 $= 2(25k+3\ell)$

= 2(25k+3e)Let x=25k+3e, $x \in \mathbb{Z}$ SM12[2.2] - Proofs II - Workbook = 2n = 1.10m+3n is even.



Sub-Section: Proof by Contrapositive

Context

Check out this question from the Sample Exam for Specialist Mathematics Units 3 and 4 Exam 2, which asks about contrapositive statements.

Question 1

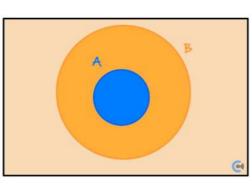
Consider the following statement.

'For all integers n, if n^2 is even, then n is even.'

Which one of the following is the contrapositive of this statement?

- **A.** For all integers n, if n^2 is odd, then n is odd.
- **B.** There exists an integer n such that n^2 is even and n is odd.
- C. There exists an integer n such that n is even and n^2 is odd.
- **D.** For all integers n, if n is odd, then n^2 is odd.
- **E.** For all integers n, if n is even, then n^2 is even.

What is a contrapositive statement?

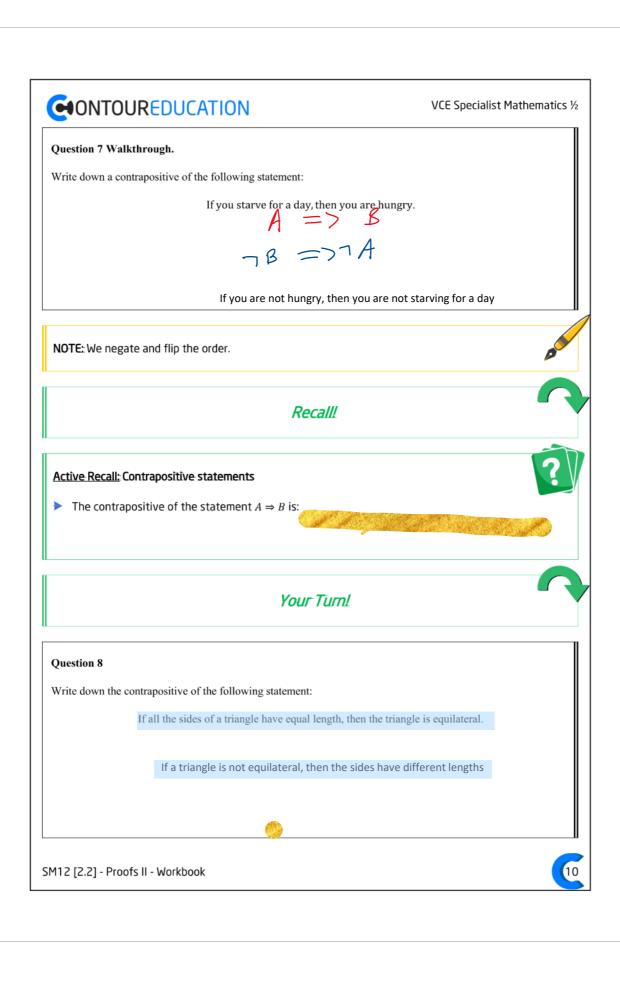


(Contrapositive Statement of $A \Rightarrow B$) is $\neg B \Rightarrow \neg A$

NOTE: Swap the order and negate the statements.

SM12 [2.2] - Proofs II - Workbook

9



Question 9 Additional Question.

Write down the contrapositive of the following statement:

If x is an irrational number, then \sqrt{x} is irrational as well.

Discussion: What happens when you prove the contrapositive?

Proving the origina,

Method 2: Proof by Contrapositive (Indirect Proof)

Instead of proving $A \Rightarrow B$, we can prove its contrapositive $\neg B \Rightarrow \neg A$.

Prove a contrapositive statement instead.

- Steps:
 - 1. Set up the contrapositive statement.
 - 2. Prove the contrapositive statement to be true.
 - 3. Conclude by saying "As contrapositive is true, the original statement is true."

Let's look at some questions together!

Question 10 Walkthrough.

Prove the following statement by contrapositive:

If
$$x^2 - 6x + 5$$
 is even, then x is odd.

If x is even, then 22-62+5 is odd

Let
$$x = 2k$$
, $k \in 2$
 $x^2 - 6x + 5 = (2k)^2 - 6(2k) + 5$
 $= 4k^2 - 12k + 4 + 1$
 $= 2(k^2 - 6k + 2) + 1$
Let $m = k^2 - 6k + 2$, $m \in 2$
 $= 2m + 1$ $= 2dd$

Since the contrapositive is true, the original statement is true.

Discussion: Imagine if we tried to do a direct proof for the previous question. Would it be easy?

No!

ONTOUREDUCATION

VCE Specialist Mathematics 1/2

Active Recall: Proof by Contrapositive

- Steps:
 - 1. Set up the workapoutwe statement.
 - 2. Prove the contrapositive statement to be _______
 - As contrapositive is true, the original statement is true

 3. Conclude by saying "______

Your Turn!

Question 11

Prove the following conditional statement using contrapositive:

Let $x \in R$. If x is irrational, then $\sqrt{x + \frac{1}{5}}$ is irrational.

If $\sqrt{\chi + \frac{1}{5}}$ is rational, then x is rational

Let $\sqrt{x+5} = \frac{a}{b}$ a, $b \in \mathbb{Z}$ $x+\frac{1}{5} = \frac{a^2}{b^2}$ $x = \frac{a^2}{b^2} - \frac{1}{5}$ $x = \frac{5a^2 - b^2}{5b^2} = \frac{m}{n} \quad n = 5b^2$

$$\chi + \frac{1}{5} = \frac{ac}{b^2}$$

$$L = \frac{5a^2 - b^2}{5b^2} = \frac{m}{n} \qquad n = 5b^2$$

$$162 \sqrt{5}b^2$$

SM12 [2.2] - Proofs II - Workbook

Since the contrapositive is true, then the original statement is also true

Question 12 Additional Question.

Prove the following statement below by first writing down its contrapositive.:

Let
$$a, b \in R^+$$
. If $\sqrt{ab} \neq \frac{a+b}{2}$, then $a \neq b$.

Note: This means that if the geometric mean and arithmetic mean of two numbers a and b are not equal, then a and b are themselves not equal.

Space for Personal Notes

SM12 [2.2] - Proofs II - Workbook

14

Sub-Section: Proof by Contradiction

Context

Check out this proof-by-contradiction question from the Specialist Mathematics Units 3 and 4 Sample Exam 2. Give it a try after completing this sub-section!

Question 4 (3 marks)

Use proof by contradiction to prove that if n is odd, where $n \in \mathbb{N}$, then $n^3 + 1$ is even.

What is a contradicting statement?

Contradicting Statement

(Contradicting Statement of $A \Rightarrow B$) is $A \Rightarrow \neg B$

Negate the <u>conduction</u>

Question 13

State the contradicting statement of the following:

If x is rational, then x^2 is rational.

If x is rational, then x^2 is irrational

<u>Discussion:</u> If we prove that the contradicting statement is false, then what are we also proving?

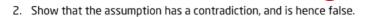
Original is true

To Prove $A \Rightarrow B$

Assume $A \Rightarrow B$ is true γ with logical B with the assumption is FALSE.

And show that the assumption is FALSE.

- Steps:
 - 1. First, assume that the contradicting statement is true.



- 3. Conclude by saying "Since the contradicting statement is false, the original statement is true."
- Considered to be an white proof, as the original statement is altered.

Let's look at some questions together!

Question 14 Walkthrough.

Prove the simple statement below using contradiction:

A sume: $log_5(9)$ is rational $log_5(9) = \frac{a}{b}$ $a,b \in \mathbb{Z}$

SM12 [2.2] - Proofs II - Workbook

This is a contradiction,

Since 5^a cant be equal to 9^b where a and b are integers, and b=/=0

Since our assumption is FALSE, the original statement is TRUE

VCE Specialist Mathematics 1/2

CONTOUREDUCATION

VCE Specialist Mathematics ½

Active Recall: Steps for Proof by Contradictions

- Steps:
 - 1. First, assume that the contradicting statement is ______.
 - 2. Show that the assumption ______, and is hence false.
 - Conclude by saying "_____

Active Recall: De Morgan's Law

$$\neg (A \land B) = \underline{\neg A \lor \neg B}$$

$$\neg (A \lor B) = \neg A \land \neg B$$

Your Turn!

Question 15

Let $a, b \in R$. Prove that if a + b > 150, then a > 75 or b > 75.

If a+b>150, then $a \in 75$ (b) and $b \leq 75$

0+0 a+b \(\) This Directly contradicts our assumption

Therefore the original statement must be true

Question 16 Additional Question.

Use proof by contradiction to prove the following statement:

Let x, y > 0 and $x \neq y$. Show that $\frac{x}{y} + \frac{y}{x} > 2$.

Key Takeaways

- ☑ Direct proof involves proving without changing the conditional statement.
- ✓ The contrapositive of a statement $A \rightarrow B$ is given by $\neg B \rightarrow \neg A$.
- ✓ Proof by contrapositive involves proving the contrapositive of the conditional statement instead.
- ✓ Proof by contradiction requires first assuming that the contradicting statement is true, then showing contradiction.

Space for Personal Notes

Section B: Converse Statements and Equivalent Statements

Sub-Section: Converse Statements

Context: Sam is being Converse

Sam is being annoying and talks in the opposite direction of what Jacob says:

Jacob: "If you like chocolate, then you are Sam"

What would Sam say?

Sam:

Here we call Sam the "______ of Jacob.

Converse Statements

Definition: Conditional statement that flows in the opposite direction.

(Converse Statement of $A \Rightarrow B$) is $B \Rightarrow A$

Question 17 Walkthrough.

For the following statement, write down the converse statement, and conclude whether the converse is true:

If a shape is a square, then it is a rectangle.
True.

If the shape is a rectangle, then it is a square

NOTE: This is NOT the same as negation! It's simply an opposite flow.

VCE Specialist Mathematics $\frac{1}{2}$

Active Recall: Converse statements

The converse of the statement $A \Rightarrow B$ is

Your Turn!

Question 18

For the following statement, write down the converse statement, and conclude whether the converse is true:

If x is divisible by 2 and 5, then it is divisible by 10.

If x is divisible by 10, then it is divisible by 2 and 5

Lrue

lau a

<u>Discussion:</u> If your friend told you that x is divisible by 2 and 5, is that equivalent to x is divisible by 10?

ONTOUREDUCATION

VCE Specialist Mathematics 1/2

Equivalent Statements (Biconditional)

It is a conditional statement where if the original is proven to be frue its converse is ALWAYS true.

 $A \Rightarrow B$ and $B \Rightarrow A$

 $A \Leftrightarrow B$

A is true, if and only if B

- In description, B is true A and only A is true.
- To prove equivalent statements, we prove each direction separately.

Question 19 Walkthrough.

Let n be an integer. Prove that n is even, if and only if 3n + 3 is odd.

A = 7B

Let n=2k, ksz

3n+3=3(2k)+3

=6k+2+1

= 2(3k+1)+1

Let m=3k+1 = 2m+1

If 3n + 3 is odd, then n is even

If n is odd, then 3n + 3 is even

Let n=2k+1

3n+3=3(2k+1)+3

-6k+C

= 2(3h+3)

Since the contrapositive is true, the original statement

NOTE: For if and only if (equivalent statement), we must prove both converse statements.

True, the or B = 3k+3, $C \in \mathbb{Z}$ is also true B = 5A is also true

NOTE: For if and only if (equivalent statement), we must prove both converse statements.

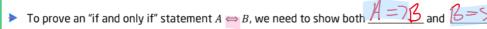
SM12 [2.2] - Proofs II - Workbook

.. A => B

CONTOUREDUCATION

VCE Specialist Mathematics 1/2

Active Recall: Proving biconditional statements



Your Turn!

Question 20

$$A \iff B$$

Let n be an integer. Prove that n is odd, if and only if n^2 is odd.

$$A = 7B$$

If n is odd, n^2 is odd, n is

Let n=2k+1, k=Z

$$n^{2} = (2k+1)^{2}$$

$$= 4k^{2} + 4k+1$$

$$= 2(2k^{2} + 2k) + 1$$

Let m= 2k2+2k = 2m+1

A=7B is true.

$$\beta = 7A$$

Using the contrapositive, If n is even, the n^2 is even

$$n^2 = 4k^2$$

= 2(2k)

Since the contrapositive is true, the original is also true

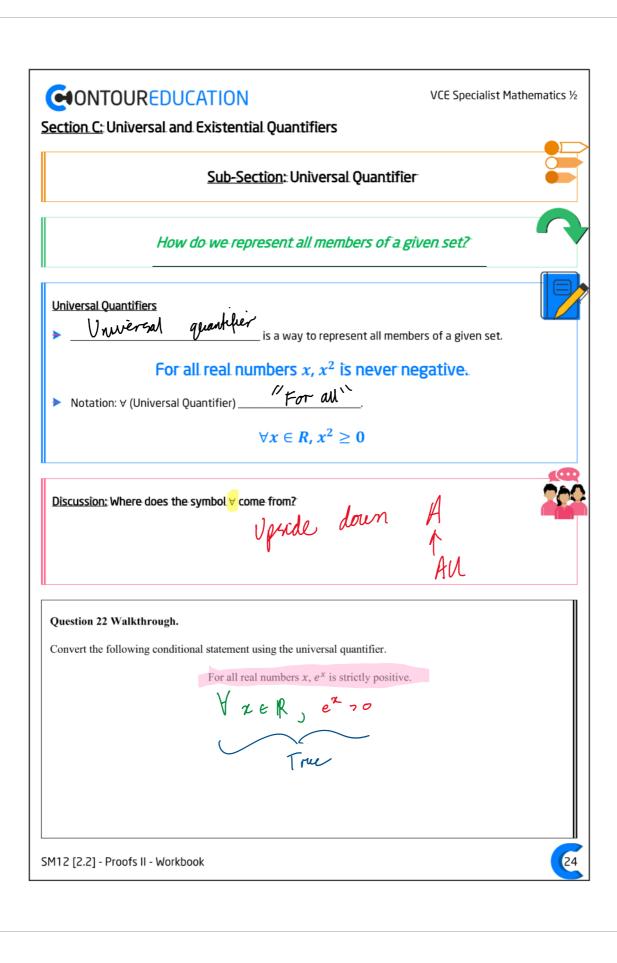
Question 21 Additional Question.

Let x be a real number. Show that $x^2 + y^2 = 0$, if and only if x = 0 and y = 0.

Key Takeaways

- ✓ The converse statement of $A \rightarrow B$ is given by $B \rightarrow A$.
- $\ensuremath{\mathbf{Z}}$ Equivalent statement is when a statement and its converse both are proved to be true.
- ✓ "If and only if" stands for equivalent statement.

Space for Personal Notes



VCE Specialist Mathematics $\frac{1}{2}$

Your Turn!

Question 23

Rewrite the following statement using the universal quantifier:

For all integers n, $n^2 - 4n$ is an integer.

Vn∈Z, n²-4n∈z

Question 24 Additional Question.

Rewrite the following statement using the universal quantifier:

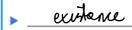
For all natural numbers n, n is at most equal to n^2 .

 $\forall n \in \mathbb{N}, n \leq n^2$

Sub-Section: Existence Quantifier

How do we represent certain members of a given set?

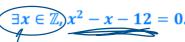
Existence Quantifiers



existence quantifier is a way to represent certain members of a given set.

Find an example

There exists an integer such that $x^2 - x - 12 = 0$.



Discussion: How can we prove the existence statement?

Question 25 Walkthrough.

Convert the following conditional statement using the existence quantifier.

There exist a real number x such that $x^2 + 4 = 16$.

 $\exists x \in \mathbb{R}$, s.t. $x^2 + 4 = 16$

VCE Specialist Mathematics $\frac{1}{2}$

Recall!

Active Recall: Existence quantifier

The symbol for the existence quantifier ∃ represents ____

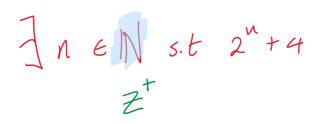
the set

Your Turn!

Question 26

Rewrite the following statement using the existence quantifier.

There exists a positive whole number n such that $2^n = 4$.



Question 27 Additional Question.

Rewrite the following statement using the existence quantifier.

There exists a positive real number x such that $x^2 < x$.

JRER S. + x2xx

Sub-Section: Negation of Universal and Existence Statement.

Discussion: What would be the opposite of saying that all living humans breathe?

Discussion: What would be the opposite of saying that some humans are taller than 190 cm?

Negation of Universal and Existence Statements

They are opposites of each other (with opposite conclusions).

-Universal Statement = Existence Statement with Opposite Conclusion

And vice versa.

Question 28 Walkthrough.

Write down the negation of the following statements.

a. For all natural numbers, $3n \ge 2n - 1$.

(Y ne IN, 3n z 2n-1)

 $\frac{1}{2}$ $\frac{1}$

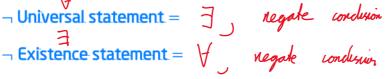
b. There exists a real number x such that $x^2 = 4$.

 $(\exists x \in \mathbb{R}, s.t x^2 = q)$ $\forall x \in \mathbb{R}, s.t n^2 \neq q$

For all real numbers x, x^2 =/= 4

VCE Specialist Mathematics $\frac{1}{2}$

Active Recall: Negation involving the universal and existence quantifiers.



Your Turn!

Question 29

Write down the negation for the following statements below.

a. If *n* is a natural number, then n + 1 > n.

There exists a natural number n, such that n + 1 < n

b. There exists an integer k such that $k^2 = k + 4$.

For all integers k, $k^2 = k + 4$

Question 30 Additional Question.

Write the negation for the following statements below.

- **a.** If *n* is a natural number, then $6n^2 + 4n + 1$ is divisible by *n*.
- **b.** There exist integers p and q such that $q \neq 0$ such that $\pi = \frac{p}{q}$.

Sub-Section: Disproving a Universal Statement.

Context

► Consider the following questionable statement:

"All of the vehicles in the carpark are black."

How can you disprove this statement?

Basically, you have just provided a <u>counter</u> example.

Disproving Universal Statement

- We prove the opposite (negation) existence statement.
- We call this proof by counter example.
 - Giving a counter example will be proving an opposite existence statement.

Question 31 Walkthrough.

Disprove the following statement: For all positive integers m, if m is prime then $m^2 + 4$ is also prime.

Provide counter example
M=2,

Since m=2 is a counter example, we have disproven the statement

NOTE: We simply give ourselves a counter example to disprove a universal statement.

Recall!

Active Recall: Disproving a universal statement.

To show that a "for all ..." statement is not true, it suffices to provide a _

Your Turn!

Question 32

Disprove the following statement:

$$\forall a, b \in R$$
, if $a^2 = b^2$ then $a = b$.
 $a = 2$ (1) = (1)
 $b = 2$ $a \neq b$
counter example.

Question 33 Additional Question.

Disprove the statement given below:

For all positive integers n, $2^n > n^2$.

Sub-Section: Disproving an Existence Statement

Disproving Existence Statements

We prove the opposite (negation) unwersal stakement

Question 34 Walkthrough.

Disprove the following statement: There exists $n \in N$ such that $n^2 + 9n + 20$ is a prime number.

1) Since n +N, N+5 7)
N+5 7 n2+9n+20 $\begin{array}{c}
1+4 \neq 1 \\
n+4 \neq n^2+9n+20
\end{array}$ $\begin{array}{c}
1+4 \neq n^2+9n+20 \text{ is not prime}
\end{array}$

NOTE: To disprove their exist statement, you must show the opposite universal statement as true.

Recall!

Active Recall: Disproving an existence statement.

To disprove a "there exists ..." statement, we need to show _

VCE Specialist Mathematics $\frac{1}{2}$

Your Turn!

Question 35

Disprove the following statements:

There exists a real number x, such that $10 + 3x^2 = 3 + x^2$.

 $\forall x \in \mathbb{R}, 10 + 3x^2 \neq 3 + x^2$

tone mathematical statement

We have disproven the OG statement

Question 36 Additional Question.

Disprove the following statement below:

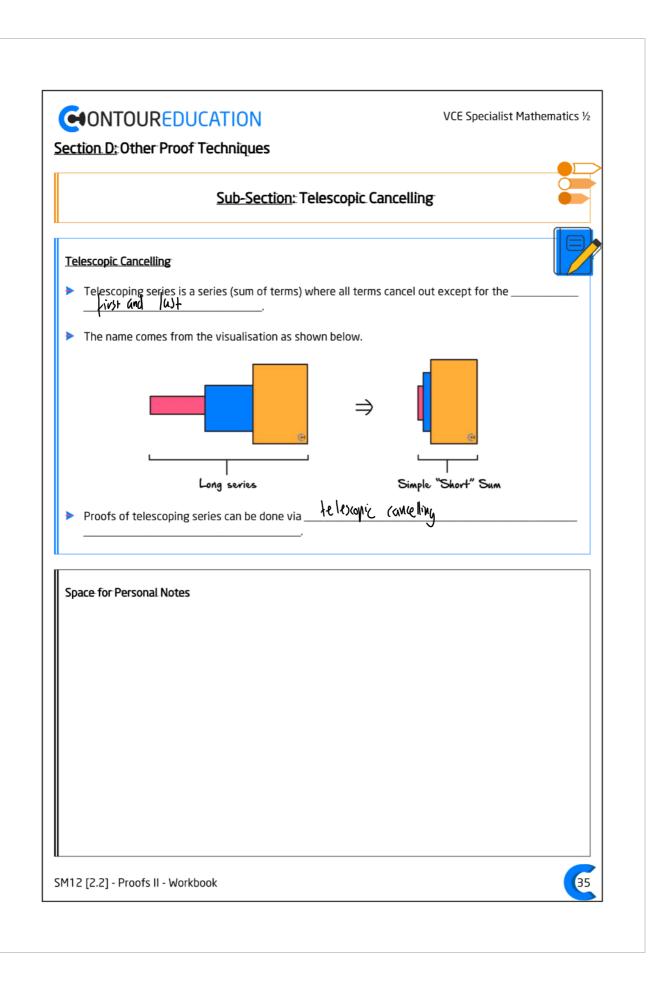
There exists $n \in N$ so that $n^3 - 2n^2 + 5n + 4$ is divisible by n + 2.

VCE Specialist Mathematics $\frac{1}{2}$

Key Takeaways

- ✓ There exists a quantifier ∃.
- For all quantifiers ∀.
- ▼ To prove a there exists statement, simply give an example.
- ✓ To prove for all statements, you must prove for all values.
- ☑ To disprove a there exist statement, prove the opposite for all statements.
- ☑ To disprove a for-all statement, prove the opposite there exist statement.

Space for Personal Notes	



Question 37 Walkthrough.

a. Using partial fractions, find the values of a and b such that:

$$\frac{3}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$$

$$= \frac{a(k+1) + brk}{k(k+1)}$$

$$3 = a(k+1) + brk$$

$$3 = a(1)$$

$$3 = a(1)$$

$$4 = 3$$

$$5 = 3$$

$$6(1)$$

$$4 = 3$$

$$5 = 3$$

$$6(1)$$

$$6 = 3$$

$$6 = 3$$

b. Hence, prove that:

$$\frac{3}{1 \times 2} + \frac{3}{2 \times 3} + \dots + \frac{3}{n \times (n+1)} = \frac{3n}{n+1}$$

$$\left(3 - \frac{3}{2}\right) + \left(\frac{3}{2} - \frac{3}{3}\right) + \left(\frac{3}{3} - \frac{3}{4}\right) \dots + \left(\frac{3}{n} - \frac{3}{n+1}\right)$$

$$-\frac{3}{n+1} = \frac{3n}{n+1}$$

Recall!

Active Recall: Telescoping sums

The key idea for telescoping sums is to ______

Your Turn!

Question 38

a. Using partial fraction decomposition, find values of A and B such that:

b. Hence, prove that:

$$\sum_{n=1}^{k} \frac{1}{n^2 + 3n + 2} = \frac{k}{2(k+2)}$$

$$N = 1$$

$$\left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) \dots + \left(\frac{1}{k+1} - \frac{1}{k+2}\right)$$

$$= \frac{k}{2(k+2)}$$

$$= \frac{k}{2(k+2)}$$

Question 39 Additional Question.

By using the fact that $\frac{2(2k+1)}{k^2(k+1)^2} = \frac{2}{k^2} - \frac{2}{(k+1)^2}$, show that:

$$\frac{2 \times 5}{2^2 \times 3^2} + \dots + \frac{2(2n+1)}{n^2(n+1)^2} = \frac{(n-1)(n+3)}{2(n+1)^2}$$

Sub-Section: Proof by Induction

Context

Check out this question from the Specialist Mathematics Units 3 and 4 Sample Exam.

Question 3 (4 marks)

Prove by mathematical induction that the number $9^n - 5^n$ is divisible by 4 for all $n \in \mathbb{N}$.

Proof by Induction

- We will be following the given steps:" \overrightarrow{TAPE} _".
 - **Step T**: Test the statement for its first possible value.
 - **G** Step A: Assume that the statement is true for n = k.
 - **Step P:** Prove that if the statement holds true for n = k, It also holds true for n = k + 1.
 - Add "By Assumption".
 - Step E: "By the principle of mathematical induction, the statement is true for a set of values."

Space for Personal Notes

CONTOUREDUCATION

VCE Specialist Mathematics 1/2

Question 40 Walkthrough.

Prove that for $n \in \mathbb{N}$, $1 + 3 + 5 \cdots (2n - 1) = n^2$.

Test N=1 Assume me N=h

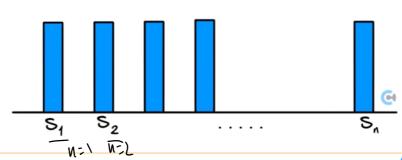
If the statement is true for n=k Then it is also true for n=k+1 However, the statement is also true for n=1

Therefore neN 1+3+5+...+2n-1 =n^2 by induction

Exploration: How do we visualise the idea of proof by induction?

- dominos ____ of statements we need to prove. Imagine we have _
- Each domino is a statement with a specific value Of h

Dominos of Statement



- In Step 1: We test/prove the first statement.
- In Steps A and P: We prove the relationship between a "previous" domino block, and the "next" one.
- If one domino falls, the next one also falls.
- Since the first one falls, all of them fall!

Recall!

Active Recall: Proofs by induction

- When doing a proof-by-induction question, we have four key steps:
 - 1. ______ the ______ holds.
 - 2. _____ the statement holds for an n =____ in the required set of values for k.
 - 3. _____ that the statement holds for _____.
 - 4. _____ using the principle of _____ that the statement holds for all *k*.

Space for Personal Notes

Your Turn!

Question 41

Prove that for all $n \in N$, we have:

$$\underbrace{1+2+\cdots+n} = \frac{n(n+1)}{2}$$

NOTE: $1 + 2 + \cdots + n$ can be written as:

$$\sum_{i=1}^{n} i$$

Test N=1
$$1 = \frac{1(1H)}{2}$$

Assume n=k i) true 1 + 2 + 3 + ... th= k(h+1) Prove n=k+1 1+2+3+...+k+k+1 $= \frac{(k+1)(k+2)}{2}$ $= \frac{(k+1)(k+2)}{2}$

the n=h i) the LHS=
$$\frac{h^2+3h+2}{2}$$
 $\frac{1}{2}$
 $\frac{1}$

Question 42 Additional Question.

Prove by induction that for any natural number $n \ge 1$, $n < 2^n$.

alex. water 715 douglas. man 27
alex. w @ contain education . com-an douglas

Class code:

Key Takeaways

- For telescoping series proof, always look for terms to cancel each other.
- \mathbf{V} For induction proof always use TAPE: Test for the first case, assume it's true for n = k, prove for n = kk+1 and explain at the end.

Space for Personal Notes

Contour Check

<u>Learning Objective</u>: [2.2.1] – Direct proofs, proofs by contrapositive and contradiction.

Key Takeaways
□ Direct proof is the conditional statement.
□ The contrapositive of a statement $A \rightarrow B$ is given by
Proof by contrapositive is proving the
Proof by contradiction requires first and showing contradiction.
Learning Objective: [2.2.2] - Converse and the equivalent of a conditional statement.
Key Takeaways
\square Converse statement of $A \rightarrow B$ is given by
Equivalent statement is when both have to be true.
"If and only if" stands for

<u>Learning Objective</u>: [2.2.3] - Proofs involving the universal and existence quantifiers.

Key Takeaways

- There exists a quantifier ∃.
- □ For all quantifiers ∀.
- □ To prove a there exists statement, simply _____
- To prove for all statements, you must prove for ______
- □ To disprove a there exist statement, _______
- □ To disprove a for-all statement, _____

<u>Learning Objective</u>: [2.2.4] – Proofs by induction and telescoping series.

Key Takeaways

- For telescoping series proof, always look for terms to ______
- For induction proof always use TAPE:

SM12 [2.2] - Proofs II - Workbook

44

Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

VCE Specialist Mathematics ½

1-on-1 Maths Consults

What Are 1-on-1 Maths Consults?

- Individual 30-minute consultations via Zoom with a Contour tutor, where you can ask questions, clarify doubts, and get tips, advice, and support in a one-on-one format.
- Complimentary (yes, entirely free) with your Contour enrolment (as long as you're enrolled in a Maths subject at Contour). You can book up to a week in advance.

SAVE THE LINK. AND MAKE THE MOST OF THIS (FREE) SERVICE!

Booking Link bit.ly/maths-consults

