# **CONTOUREDUCATION**

Website: contoureducation.com.au | Phone: 1800 888 300

Email: hello@contoureducation.com.au

## VCE Specialist Mathematics ½ Proofs II [2.2]

Workbook

## Outline:

Pg 24-34

#### **Proving Conditional Statements**

- Conditional Statements
- Methods of Proving Conditional Statements
- Direct Proof
- Proof by Contrapositive
- Proof by Contradiction

## Converse Statements and Equivalent Statements

Converse Statements

Pg 2-18

Pg 19-23

#### **Universal and Existential Quantifiers**

- Universal Quantifier
- Existence Quantifier
- Negation of Universal and Existence Statement
- Disproving a Universal Statement
- Disproving an Existence Statement

#### Other Proof Techniques

Pg 35-42

- Telescopic Cancelling
- Proof by Induction

## **Learning Objectives:**

- SM12 [2.2.1] Direct proofs, proofs by contrapositive and contradiction.
- SM12 [2.2.2] Converse and the equivalent of a conditional statement.
- SM12 [2.2.3] Proofs involving the universal and existence quantifiers.
- SM12 [2.2.4] Proofs by induction and telescoping series.





## Section A: Proving Conditional Statements

## **Sub-Section: Conditional Statements**



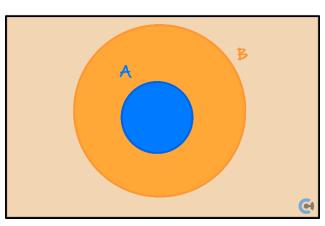
#### **Context**

After this workbook, you will have the skills to tackle proof questions in Unit 3 and 4 level!

#### **Exploration: Visualisation of Conditional Statements**







If A, then B.

#### **Conditional Statements**



Note: Notation for "implies": ⇒

"Hypothesis  $\Rightarrow$  Conclusion"

**NOTE:** Order Matters!







## Let's look at some questions together!



#### Question 1 Walkthrough.

Write a conditional statement for the following:

A customer will receive a coupon if they spend \$500.

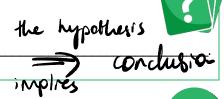
If a customer spends \$500 then
they receive a coupon

## Recall!



#### **Active Recall: Conditional statements**

The relationship between the hypothesis and the conclusion is that \_



## Your Turn!

#### **Question 2**

Write a conditional statement for the following:

Doing strength training grows your muscles.

If you do strength training then you musches will grow.



**Question 3 Additional Question.** 

Write a conditional statement for the following:

All books in the library's collection are about history.

If beak in library's collectron, it is about history.



## **Sub-Section**: Methods of Proving Conditional Statements



Okay, how do we prove them?



**Proving Conditional Statements** 



- 1. Direct Proof
- 2. Proof by Contrapositive
- 3. Proof by Contradiction



## **Sub-Section: Direct Proof**



#### **Context**



The proof question for the most recent VCAA Exam 1 was a direct proof!

## **REMINDER**



From last week, we found that an even number can be written in the form:

An odd number can be written in the form:

If a number is divisible by 3, then it can be written in the form:

If a number is not divisible by 3, then it can be written in the form:

For proofs involving divisibility, we often need to split into

#### **Method 1: Direct Proof**

- The simplest method of proof. These are the proofs we have been working on in [2.1].
- Here we are not altering the statement we need to prove.



Question 4 Walkthrough.

Prove that if n is even, then  $n^3$  is divisible by 8.

Then 
$$n^3 = (2k)^3$$
  
=  $8k^3$ 

But k³ ∈ Z : n³ is divisible by 8

as req.

**NOTE:** We did not change the statement itself! Hence, a direct proof.

## Recall!

## **Active Recall:** Direct proofs





## Your Turn!

#### **Question 5**

Prove that for all integers m and n, if m is divisible by 5 and n is divisible by 2, then 10m + 3n is even.

$$= 2p$$

SM12[2.2]-Proofs II-Workbook Where p = 25k + 3j + 2i. is even, as req.







**Question 6 Additional Question.** 

Prove that if the last two digits of n are divisible by 4, then n is divisible by 4.

Write 
$$N=1000+t$$
,  $a,b\in NU\{0\}$  and  $0\leq t<100$   
Then, if  $b=4k$ ,  $k\in N$   
Then  $n=100a+4k$   
 $=4(25a+k)$   
 $=4p$ ,  $p=25a+k\in N$   
in  $n=100$  is divisible by 4.



## **Sub-Section**: Proof by Contrapositive



#### **Context**



Check out this question from the Sample Exam for Specialist Mathematics Units 3 and 4 Exam 2, which asks about contrapositive statements.

#### Question 1

Consider the following statement.

'For all integers n, if  $n^2$  is even, then n is even.'

Which one of the following is the contrapositive of this statement?

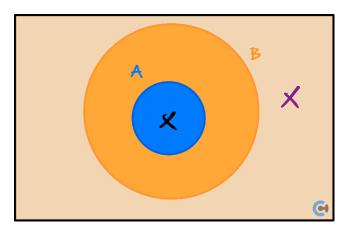
- **A.** For all integers n, if  $n^2$  is odd, then n is odd.
- **B.** There exists an integer n such that  $n^2$  is even and n is odd.
- C. There exists an integer n such that n is even and  $n^2$  is odd.
- **D.** For all integers n, if n is odd, then  $n^2$  is odd.
- **E.** For all integers n, if n is even, then  $n^2$  is even.



## What is a contrapositive statement?



#### **Contrapositive Statement**



(Contrapositive Statement of  $A \Rightarrow B$ ) is  $\neg B \Rightarrow \neg A$ 

**NOTE:** Swap the order and negate the statements.







Question 7 Walkthrough.

Write down a contrapositive of the following statement:

If you starve for a day, then you are hungry.

If you are not hungry then you haven't stand for a day

**NOTE:** We negate and flip the order.



## Recall!



#### **Active Recall:** Contrapositive statements

The contrapositive of the statement  $A \Rightarrow B$  is:



## Your Turn!



#### **Question 8**

Write down the contrapositive of the following statement:

If all the sides of a triangle have equal length, then the triangle is equilateral.

If a triangle is not equilateral, not all of its sides have equal length.



**Question 9 Additional Question.** 

Write down the contrapositive of the following statement:

If *x* is an irrational number, then  $\sqrt{x}$  is irrational as well.

Discussion: What happens when you prove the contrapositive?



You prove O.G

## Method 2: Proof by Contrapositive (Indirect Proof)



Instead of proving  $A \Rightarrow B$ , we can prove its contrapositive  $\neg B \Rightarrow \neg A$ .

## Prove a contrapositive statement instead.

- Considered to be an <u>indirect proof</u>, as the original statement is altered.
- Steps:
  - 1. Set up the contrapositive statement.
  - 2. Prove the contrapositive statement to be true.
  - 3. Conclude by saying "As contrapositive is true, the original statement is true."





## Let's look at some questions together!

#### Question 10 Walkthrough.

Prove the following statement by contrapositive:

If  $x^2 - 6x + 5$  is even, then x is odd.

It suffices to instead prove the contrapositive:

If x is ever then x2-6x+S is odd

Then 
$$x^2-6x+5$$
  
=  $(2k)^2-6(2k)+5$   
=  $4k^2-12k+5$   
=  $2(2k^2-6k+2)+1$   
=  $2p+1$ ,  $p=2k^2-6k+2 \in \mathbb{Z}$   
:  $x^2-6x+5$  is odd, as req.

<u>Discussion:</u> Imagine if we tried to do a direct proof for the previous question. Would it be easy?



## Recall!



## **Active Recall: Proof by Contrapositive**



- Steps:
  - 1. Set up the \_\_\_\_\_\_ONTMOSITM statement.
  - 2. Prove the contrapositive statement to be \_\_\_\_tme
  - 3. Conclude by saying "Since Contrapos, is true, the original statement is true?

It nis rational Your Turn!

n = 1/2, P. 9 EZ

#### **Question 11**

Prove the following conditional statement using contrapositive:

Let  $x \in R$ . If x is irrational, then  $\sqrt{x + \frac{1}{5}}$  is irrational.

(1) Contrapositive: If  $\int_{2c+\frac{1}{5}}$  is rational, then

x is retronal.

Then  $x + \frac{1}{5} = \frac{\rho^2}{9^2}$  $x = \frac{\rho^2}{6^2} - \frac{1}{5}$  $\chi = \frac{5\rho^2 - q^2}{5q^2}$ 

But Sp2-q2 & 2 & 522 & 2

Landton Ti

SM12 [2.2] - Proofs II - Workbook Hence, since the contraposithe is true, so is the Original Statement.



#### **Question 12 Additional Question.**

Prove the following statement below by first writing down its contrapositive.:

Let 
$$a, b \in R^+$$
. If  $\sqrt{ab} \neq \frac{a+b}{2}$ , then  $a \neq b$ .

Note: This means that if the geometric mean and arithmetic mean of two numbers a and b are not equal, then a and b are themselves not equal.

Prove netead the contrapositive, that is,

If 
$$a = b^{-}$$
, then  $\int ab^{-} = \frac{a+b^{-}}{2}$ 

LHS =  $\int ab^{-} = \frac{a+a^{-}}{2}$ 

=  $a + a$ 

=  $a + b$ 

=  $a + b$ 

So The original statement is true,



## **Sub-Section**: Proof by Contradiction



#### **Context**



Check out this proof-by-contradiction question from the Specialist Mathematics Units 3 and 4 Sample Exam 2. Give it a try after completing this sub-section!

Question 4 (3 marks)

Use proof by contradiction to prove that if *n* is odd, where  $n \in \mathbb{N}$ , then  $n^3 + 1$  is even.

## What is a contradicting statement?



#### **Contradicting Statement**



(Contradicting Statement of  $A \Rightarrow B$ ) is  $A \Rightarrow \neg B$ 

Negate the Londing Ten

#### **Question 13**

State the contradicting statement of the following:

If x is rational, then  $x^2$  is rational.

If x is rational, then x2 is irrational

<u>Discussion:</u> If we prove that the contradicting statement is false, then what are we also proving?



O.G is true





#### Method 3: Proof by Contradiction (Indirect Proof)



To Prove  $A \Rightarrow B$ 

Assume  $A \Rightarrow \neg B$  is true

## And show that the assumption is FALSE.

- Steps:
  - 1. First, assume that the contradicting statement is true.
- 2. Show that the assumption has a contradiction, and is hence false. dissibility
- 3. Conclude by saying "Since the contradicting statement is false, the original statement is true
- Considered to be an \_\_\_\_\_\_\_, as the original statement is altered.

## Let's look at some questions together!

#### Question 14 Walkthrough.

Prove the simple statement below using contradiction:

 $log_5(9)$  is irrational



Assume instead, that 1095(9) is rational.

Let logs(9) = 1/9, P, 9 & 2 & 9 # 0

9:5/2

, & RHS is chivisible



SM12 [2.2] - Proofs II - Workbook



## **C**ONTOUREDUCATION

#### **Active Recall: Steps for Proof by Contradictions**



- > Steps:
  - 1. First, assume that the contradicting statement is \_\_\_\_\_\_
  - 2. Show that the assumption **has a controlistion**, and is hence false.
  - 3. Conclude by saying " Sime the negetion is false, the

## Active Recall: De Morgan's Law



$$\neg (A \land B) = \neg A \lor \neg B$$

$$\neg (A \lor B) = \neg A \land \neg B$$

## Your Turn!



#### **Question 15**

Let  $a, b \in R$ . Prove that if a + b > 150, then a > 75 or b > 75.

Assure instead that a+b>150 => a < 75 and b < 75

But a ≤75 & b ≤75 → a+b ≤ 75+75

: att ≤150

a+b ≤ 150 & a+b>150 is a contradiction

. The original Statement is true.



#### **Question 16 Additional Question.**

Use proof by contradiction to prove the following statement:

Let x, y > 0 and  $x \neq y$ . Show that  $\frac{x}{y} + \frac{y}{x} > 2$ .

1) Assume 
$$\frac{\chi}{y} + \frac{y}{\chi} \le 2$$
  
Then  $\frac{\chi^2 + y^2}{y\chi} \le 2$ 

Then 
$$\frac{x^2+y^2}{yx^2} \le 2$$

$$x^2+y^2 \le 2xy$$

$$x^2-2xy+y^2 \le 0$$

$$(x-y)^2 \le 0$$

 $(x-y)^2 \leq 0$ This is a contradiction as  $a^2 > 0$  for all at R

.. The original statement is true.

## **Key Takeaways**



- ☑ Direct proof involves proving without changing the conditional statement.
- ✓ The contrapositive of a statement  $A \rightarrow B$  is given by  $\neg B \rightarrow \neg A$ .
- ☑ Proof by contrapositive involves proving the contrapositive of the conditional statement instead.
- ✓ Proof by contradiction requires first assuming that the contradicting statement is true, then showing contradiction.



## Section B: Converse Statements and Equivalent Statements

## **Sub-Section: Converse Statements**

#### **Context:** Sam is being Converse

Sam is being annoying and talks in the opposite direction of what Jacob says:

Jacob: "If you like chocolate, then you are Sam"

What would Sam say?

Here we call Sam the "\_\_\_\_\_\_\_" of Jacob.



#### **Converse Statements**

**Definition**: Conditional statement that flows in the opposite direction.

(Converse Statement of  $A \Rightarrow B$ ) is  $B \Rightarrow A$ 

#### Question 17 Walkthrough.

For the following statement, write down the converse statement, and conclude whether the converse is true:

If a shape is a square, then it is a rectangle.



If a shape is a rectangle, then it is a square B.

This is false.

**NOTE:** This is NOT the same as negation! It's simply an opposite flow.





### Recall!



#### **Active Recall:** Converse statements



 $\blacktriangleright$  The converse of the statement  $A \Rightarrow B$  is



## Your Turn!



#### **Question 18**

For the following statement, write down the converse statement, and conclude whether the converse is true:

If *x* is divisible by 2 and 5, then it is divisible by 10.

If x 13 divisible by 10, then it is divisible by 2 & 5.

True 19

<u>Discussion:</u> If your friend told you that x is divisible by 2 and 5, is that equivalent to x is divisible by 10?







## What happens if the converse is also true?



## **Equivalent Statements (Biconditional)**



It is a conditional statement where if the original is \_\_\_\_\_ Prove \_\_\_\_ to be \_\_\_\_\_ its converse is ALWAYS true

$$A \Rightarrow B$$
 and  $B \Rightarrow A$ 

$$A \Leftrightarrow B$$

A is true, if and only if B

- In description, B is true A is true.
- To prove equivalent statements, we prove each direction separately.

## Question 19 Walkthrough.





Let n be an integer. Prove that n is even, if and only if 3n + 3 is odd.

Then 
$$3n+3=3(2k)+3$$

$$= 6k + 3$$

Which is odd as 3k+1 EZZ

## =) If 3 n+3 is odd, then n is even

Use contrapositive: If n is odd, then 3n+3 is even Let n = 2k+1, then 3n+3 = 6k+3+3= 2(3k+3)

**NOTE:** For if and only if (equivalent statement), we must prove both converse statements.



.. The statement is proved.



## Recall!

## R

#### **Active Recall: Proving biconditional statements**



To prove an "if and only if" statement  $A \Leftrightarrow B$ , we need to show both  $A \ni B$  and  $B \ni A$ .

## Your Turn!



#### **Question 20**

Let n be an integer. Prove that n is odd, if and only if  $n^2$  is odd.

 $n is old \implies n^2 is old$ 

N = 2k+1,  $k \in \mathbb{Z}$ Thun  $n^2 = (2k+1)^2$   $= 4k^2+4k+1$   $= 2(2k^2+2h)+1$   $= 2(2k^2+2h)+1$  $= 2k^2+2k\in\mathbb{Z}$ , then  $n^2$  is odd 2 n2 is odd => n is odd from by contrapositive.

Contrapositive: n'is even > n2 iseuc

Let n = 2k,  $k \in \mathbb{Z}$ Then  $n^2 = (2k)^2$  $= 2(2k^2)$ 

But 2k2 € 2

in 12 is even

nodd (=> n² 3 odd, asreg.



#### **Question 21 Additional Question.**

Let x be a real number. Show that  $x^2 + y^2 = 0$ , if and only if x = 0 and y = 0.

$$x=0, y=0 \Rightarrow x^2 + y^2 = 0$$

$$0^2 + 0^2 = 0 + 0 = 0$$
.'- True

Prove instead the contrapositor, that is if 
$$x \neq 0$$
 or  $y \neq 0$  then  $n^2 + y^2 \neq 0$ 

If  $x \neq 0$ , then  $x^2 + y^2 \geqslant x^2 > 0$ 

Since  $x \neq 0$ 

Since  $x \neq 0$ 

Since  $y \neq 0$ 

Since  $y \neq 0$ 

Since  $y \neq 0$ 

Since  $y \neq 0$ 

is the original statement is time.

## **Key Takeaways**

- ✓ The converse statement of  $A \rightarrow B$  is given by  $B \rightarrow A$ .
- Equivalent statement is when a statement and its converse both are proved to be true.
- $\ensuremath{\mathbf{W}}$  "If and only if" stands for equivalent statement.



## Section C: Universal and Existential Quantifiers

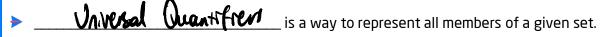
## **Sub-Section: Universal Quantifier**



## How do we represent all members of a given set?

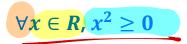


## **Universal Quantifiers**



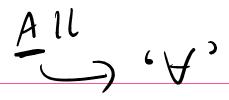


Notation: ∀ (Universal Quantifier) \_\_\_\_\_ .





<u>Discussion:</u> Where does the symbol ∀ come from?



#### Question 22 Walkthrough.

Convert the following conditional statement using the universal quantifier.

For all real numbers x,  $e^x$  is strictly positive.









## Your Turn!



#### **Question 23**

Rewrite the following statement using the universal quantifier:

For all integers n,  $n^2 - 4n$  is an integer.

#### **Question 24 Additional Question.**

Rewrite the following statement using the universal quantifier:

For all natural numbers n, n is at most equal to  $n^2$ .

$$\forall n \in N, n \leq n^2$$



## **Sub-Section**: Existence Quantifier



How do we represent certain members of a given set?



## **Existence Quantifiers**



Existence quantifier is a way to represent certain members of a given set.

There exists an integer such that  $x^2 - x - 12 = 0$ .

➤ Notation: ∃ (Existential Quantifier) There exists 3

$$\exists x \in \mathbb{Z}, x^2 - x - 12 = 0.$$

Give an example



**Discussion:** How can we prove the existence statement?



Convert the following conditional statement using the existence quantifier.

There exist a real number x such that  $x^2 + 4 = 16$ .



## Recall!



#### Active Recall: Existence quantifier



## Your Turn!



#### **Question 26**

Rewrite the following statement using the existence quantifier.

There exists a positive whole number n such that  $2^n = 4$ .

#### **Question 27 Additional Question.**

Rewrite the following statement using the existence quantifier.

There exists a positive real number x such that  $x^2 < x$ .



## Sub-Section: Negation of Universal and Existence Statement



<u>Discussion:</u> What would be the opposite of saying that all living humans breathe?



At beast one human doesn't breath

<u>Discussion:</u> What would be the opposite of saying that some humans are taller than 190 cm?



All are 190cm o- Shorter

## **Negation of Universal and Existence Statements**



- They are opposites of each other (with opposite conclusions).
- ¬Universal Statement = Existence Statement with Opposite Conclusion
- And vice versa.

#### Question 28 Walkthrough.

Write down the negation of the following statements.

**a.** For all natural numbers,  $3n \ge 2n - 1$ .

**b.** There exists a real number x such that  $x^2 = 4$ .

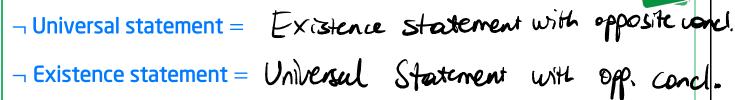
$$\forall n \in N, x^2 \neq 4$$



#### Recall!



Active Recall: Negation involving the universal and existence quantifiers.





## Your Turn!

#### **Question 29**

Write down the negation for the following statements below.

**a.** If *n* is a natural number, then n + 1 > n.

**b.** There exists an integer k such that  $k^2 = k + 4$ .

#### **Question 30 Additional Question.**

Write the negation for the following statements below.

**a.** If n is a natural number, then  $6n^2 + 4n + 1$  is divisible by n.

**b.** There exist integers p and q such that  $q \neq 0$  such that  $\pi = \frac{p}{q}$ .

$$\forall P, 2 \in \mathbb{Z} \quad \mathcal{L} \quad \mathcal{L}$$



## **Sub-Section**: Disproving a Universal Statement



#### **Context**

3

Consider the following questionable statement:

"All of the vehicles in the carpark are black."

How can you disprove this statement?

Find a car that isn't block



## **Disproving Universal Statement**

- We prove the opposite (negation) existence statement.
- ➤ We call this proof by \_\_\_\_\_\_\_\_\_
  - Giving a counter example will be proving an opposite existence statement.

### Question 31 Walkthrough.

Disprove the following statement: For all positive integers m, if m is prime then  $m^2 + 4$  is also prime.

Let 
$$m=2$$

M is prime. But  $2^2+4=8$ 

A B is not composite

I 8 is not composite.

The statement is false by counterexample



**NOTE:** We simply give ourselves a counter example to disprove a universal statement.

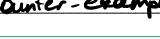


## Recall!



Active Recall: Disproving a universal statement.





## Your Turn!



**Question 32** 

Disprove the following statement:

$$\forall a, b \in R$$
, if  $a^2 = b^2$  then  $a = b$ .

$$a \neq b$$
 but  $a^2 = b^2$ 

 $a \neq b$  but  $a^2 = b^2$ ... by counterexample, the statement is time.

**Question 33 Additional Question.** 

Disprove the statement given below:

For all positive integers n,  $2^n > n^2$ .



## Sub-Section: Disproving an Existence Statement



## **Disproving Existence Statements**



➤ We prove the *opposite* (negation) <u>Universal Statement</u>

(Direct or Indirect Proof)

Question 34 Walkthrough.

Disprove the following statement: There exists  $n \in N$  such that  $n^2 + 9n + 20$  is a prime number.

Negation:  $\forall n \in \mathbb{N}$ ,  $n^2 + 9n + 20$  is NOT prime.

$$n^2 + 9n + 20 = (n+5)(n+4)$$
  
 $n+5 \neq \{0,1\}$  smu  $n \in \mathbb{N}$   
 $n+4 \neq \{0,1\}$  since  $n \in \mathbb{N}$ 

:.  $n^2 + 9n + 20$  has factors that are not just 1 & itself

in 2+9n+20 is composite

:. The original statement is false.

**NOTE:** To disprove their exist statement, you must show the opposite universal statement as true.

## Recall!



Active Recall: Disproving an existence statement.

To disprove a "there exists ..." statement, we need to show the opposite universal ...





## Your Turn!

#### **Question 35**

Disprove the following statements:

There exists a real number x, such that  $10 + 3x^2 = 3 + x^2$ .

Negation:  $\forall x \in \mathbb{R}$ ,  $10+3x^2 \neq 3+x^2$ 

$$2x^{2} \neq -7$$
 $x^{2} \neq -7$ 

Which is true since x2 > 0 Yxel.

i. The original Statement is false.

#### **Question 36 Additional Question.**

Disprove the following statement below:

There exists  $n \in N$  so that  $n^3 - 2n^2 + 5n + 4$  is divisible by n + 2.

Proce instead that "  $\forall n \in \mathbb{N}$ ,  $n^3 - 2n^2 + Sn + 4$  is not dissible

by 1+2)

Let 
$$P(x) = x^3 - 2x^2 + 5x + 4$$
  
 $P(-2) = -8 - 8 - 10 + 4 = -22 \neq 0$ 

n+2 15 not a fouter P(n) by
factor theorem.

SM12 [2.2] - Proofs II - Workbook



## **Key Takeaways**



- There exists a quantifier ∃.
- ✓ For all quantifiers ∀.
- ☑ To prove a there exists statement, simply give an example.
- ☑ To prove for all statements, you must prove for all values.
- ✓ To disprove a there exist statement, prove the opposite for all statements.
- ✓ To disprove a for-all statement, prove the opposite there exist statement.

| Space for P | ersonal Notes |
|-------------|---------------|
|-------------|---------------|



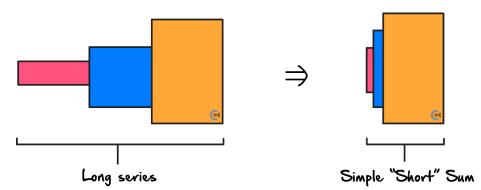
## Section D: Other Proof Techniques

## **Sub-Section:** Telescopic Cancelling



## **Telescopic Cancelling**

- Telescoping series is a series (sum of terms) where all terms cancel out except for the \_ 2 at term.
- The name comes from the visualisation as shown below.





#### Question 37 Walkthrough.

**a.** Using partial fractions, find the values of a and b such that:

$$\frac{3}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$$

$$\frac{(a+b)k+a}{k(k+1)} = \frac{3}{k(k+1)}$$

$$a = 3$$

$$a+b=0$$

$$b=-3$$

$$a = 3, b=-3$$

**b.** Hence, prove that:

$$\frac{3}{1 \times 2} + \frac{3}{2 \times 3} + \dots + \frac{3}{n \times (n+1)} = \frac{3n}{n+1}$$

When result:  $\frac{3}{1(1+1)} + \frac{3}{2(2+1)} + \dots + \frac{3}{n(n+1)}$ 

$$= \frac{3}{1} + \frac{3}{2} + \frac{3}{2} + \dots + \frac{3}{n(n+1)}$$

$$+ \frac{3}{2} - \frac{3}{3} + \dots + \frac{3}{n-1} + \frac{3}{n} + \dots + \frac{3}{n}$$

$$= \frac{3n+3-3}{n+1} = \frac{3n}{n+1}$$

Recall!

Recall!

## **Active Recall:** Telescoping sums







## Your Turn!

#### **Question 38**

**a.** Using partial fraction decomposition, find values of A and B such that:

$$\frac{1}{(n+1)(n+2)} = \frac{A}{n+1} + \frac{B}{n+2}$$

$$= \frac{A+B}{n+1} + \frac{B}{n+2}$$

$$= \frac{A+B}{(n+1)(n+2)}$$

$$= \frac{A+B}{(n+1)(n+2)}$$

$$= \frac{A+B=0}{(n+1)(n+2)}$$

**b.** Hence, prove that:

$$\sum_{n=1}^{k} \frac{1}{n^{2} + 3n + 2} = \sum_{n=1}^{k} \frac{1}{n^{2} + 3n + 2} = \frac{k}{2(k+2)}$$

$$= \left(\frac{1}{2} + \frac{1}{3}\right) a_{1}$$

$$+ \left(\frac{1}{3} - \frac{1}{4}\right) a_{2}$$

$$+ \dots \left(\frac{1}{k} - \frac{1}{k+2}\right) a_{k-1}$$

## **Question 39 Additional Question.**

Question 39 Additional Question. 
$$= \frac{1}{2} - \frac{1}{k_1 2}$$

By using the fact that  $\frac{2(2k+1)}{k^2(k+1)^2} = \frac{2}{k^2} - \frac{2}{(k+1)^2}$ , show that:

$$=\frac{k}{2(k+2)}$$
, as req.

$$\frac{2 \times 5}{2^2 \times 3^2} + \dots + \frac{2(2n+1)}{n^2(n+1)^2} = \frac{(n-1)(n+3)}{2(n+1)^2}$$

Starts at k = 2

SM12 [2.2] - Proofs II - Workbook



## **Sub-Section**: Proof by Induction



#### **Context**



Check out this question from the Specialist Mathematics Units 3 and 4 Sample Exam.

**Question 3** (4 marks)

Prove by mathematical induction that the number  $9^n - 5^n$  is divisible by 4 for all  $n \in \mathbb{N}$ .

#### **Proof by Induction**



- - Step T: Test the statement for its first possible value.
  - **Step A:** Assume that the statement is true for n = k.
  - **Step P:** Prove that if the statement holds true for n = k, It also holds true for n = k + 1.
    - Add "By Assumption".
  - Step E: "By the principle of mathematical induction, the statement is true for a set of values."

## **C**ONTOUREDUCATION

Question 40 Walkthrough.

Prove that for  $n \in \mathbb{N}$ ,  $1 + 3 + 5 \cdots (2n - 1) = n^2$ .

: Base Con True

2) Let k ∈ N be arbitrary, and assume P(k) true.

That is  $1+3+...+(2k-1)=k^2$ 

$$= k^2 + 2k + 1$$
 (by asym

(9) Since P(i) true,  $d P(k) \Rightarrow P(k+1)$  then P(n) true for all n + N by the principle of induction.

## <u>Exploration</u>: How do we visualise the idea of proof by induction?

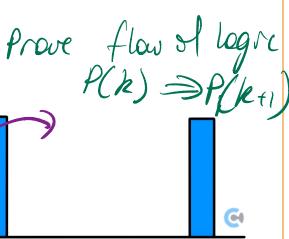
- Imagine we have \_\_\_\_\_\_ of statements we need to prove.
- Each domino is a statement with a specific value \_\_\_\_\_\_\_.

Dominos of Statement

) bak

(ast

Sı



## **C**ONTOUREDUCATION

- In Step 1: We test/prove the first statement.
- In Steps A and P: We prove the relationship between a "previous" domino block, and the "next" one.
- If one domino falls, the next one also falls.

(If P(k) true, then P(k+1) also true)

Since the first one falls, all of them fall!

## Recall!



## **Active Recall:** Proofs by induction

?

- When doing a proof-by-induction question, we have four key steps:
  - 1. Lest the base Case holds.
  - 2. \_\_\_\_\_\_ the statement holds for an  $n = \underline{k}$ \_ in the required set of values for k.

  - 4. \_\_\_\_\_\_ using the principle of \_\_\_\_\_\_ that the statement holds for all k.



## Your Turn!

#### **Question 41**

Prove that for all  $n \in N$ , we have:

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

**NOTE:**  $1 + 2 + \cdots + n$  can be written as:

$$\sum_{i=1}^{n} i$$

- Base Case True

2) Assume REN be arbitrary & P(k) true.

That is, 
$$1+2+..+k = \frac{k(k+1)}{2}$$

$$= \frac{k(k+1)}{2} + (k+1) \left( by \right)$$

(g) Since 
$$P(1)$$
 Time &  $P(k) \Longrightarrow P(k+1)$ , then  $P(n)$  is true for all

SM12 [2.2] - Proofs II - Workbook



**Question 42 Additional Question.** 

Prove by induction that for any natural number  $n \ge 1$ ,  $n < 2^n$ .

Lits = 
$$2^{k+1}$$
  
=  $2(2^k)$   
=  $2^k + 2^k$   
>  $k+k$  (by assumption)  
>  $k+1$  as  $k > 1$ 

(4): Since 
$$P(1)$$
 Time  $Q P(k) \Rightarrow P(k+1)$ ,  $P(n)$  time  $Y n \in M$  by induction.

## Key Takeaways



- ✓ For telescoping series proof, always look for terms to cancel each other.
- For induction proof always use TAPE: Test for the first case, assume it's true for n = k, prove for n = k + 1 and explain at the end.





## **Contour Check**

<u>Learning Objective</u>: [2.2.1] – Direct proofs, proofs by contrapositive and contradiction.

| COITH duiction.                                                                            |
|--------------------------------------------------------------------------------------------|
| Key Takeaways                                                                              |
| Direct proof is pround without charging the conditional statement.                         |
| The contrapositive of a statement $A \rightarrow B$ is given by $A \rightarrow A$ .        |
| Proof by contrapositive is proving the <u>contrapositive</u> instead.                      |
| Proof by contradiction requires first the negation is time and showing contradiction.      |
|                                                                                            |
| Learning Objective: [2.2.2] - Converse and the equivalent of a conditional statement.  A B |
| Key Takeaways                                                                              |
| Converse statement of $A \rightarrow B$ is given by $B \rightarrow A$ .                    |
| Equivalent statement is when <u>a Statement</u> both have to be true.                      |
| "If and only if" stands for <u>equivalence</u> .                                           |



Learning Objective: [2.2.3] - Proofs involving the universal and existence quantifiers.

## **Key Takeaways**

- There exists a quantifier ∃.
- For all quantifiers ∀.
- □ To prove a there exists statement, simply give an example.
- □ To prove for all statements, you must prove for <u>all values</u>
- □ To disprove a there exist statement, <u>frove opposite universal statement</u>.
  □ To disprove a for-all statement, <u>prove opposite there exists statement</u>.

<u>Learning Objective</u>: [2.2.4] - Proofs by induction and telescoping series.

## **Key Takeaways**

For induction proof always use TAPE:

Assume the for n= k

Prove that the for n= k+1

Explain at end.



Website: contoureducation.com.au | Phone: 1800 888 300 | Email: hello@contoureducation.com.au

## VCE Specialist Mathematics ½

## 1-on-1 Maths Consults

#### What Are 1-on-1 Maths Consults?



- Individual 30-minute consultations via Zoom with a Contour tutor, where you can ask questions, clarify doubts, and get tips, advice, and support in a one-on-one format.
- Complimentary (yes, entirely free) with your Contour enrolment (as long as you're enrolled in a Maths subject at Contour). You can book up to a week in advance.

SAVE THE LINK. AND MAKE THE MOST OF THIS (FREE) SERVICE!



# Booking Link bit.ly/maths-consults

